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1 Introduction

For marketing managers it is important to understand the dynamic effects of marketing-

mix variables like promotion and advertising on marketing performance measures such as

sales, market shares and profitability. Particularly, it is relevant to understand the long-

run effects of marketing efforts as this knowledge can for example lead to more efficient

marketing strategies. Examples of recent studies that address this issue are Mela et al.

(1997), Dekimpe et al. (1999), Jedidi et al. (1999) and Paap and Franses (2000) to mention

just a few.

In this paper we address the issue of measuring the long-run impact of marketing-mix

variables in the context of interpurchase times. The theoretical and empirical analysis

of purchase-timing behavior of households has received considerable attention in recent

years. Using an extension of an Erlang-2 type of model, Gupta (1988) demonstrates

that promotions shorten interpurchase times. Helsen and Schmittlein (1993), Jain and

Vilcassim (1991) and Vilcassim and Jain (1991) propose to analyze interpurchase times

using hazard functions. The last two studies also incorporate household heterogeneity,

see also for example Gönül and Srinivasan (1993) for further refinements. An important

extension to modeling interpurchase times for two related product categories is given in

Chintagunta and Haldar (1998). Furthermore, Chintagunta and Prasad (1998) consider

modeling purchase-timing behavior and brand-choice decisions jointly.

Dynamic models for interpurchase times are however relatively scarce. This is however

strange as one may expect an increase in interpurchase times after a promotion. One ex-

ample of a study that explicitly incorporates dynamic structures is Allenby et al. (1999).

In this paper dynamics in durations are modeled by lagged interpurchase times. In con-

trast to the above-mentioned studies concerning dynamics in sales and market shares,

this study on interpurchase times does not explicitly consider separating long-run from

short-run effects of marketing mix variables on purchase-timing behavior. In the present

paper we aim to contribute to the literature by putting forward a dynamic model for

interpurchase times that does allow for such an interpretation. The key feature of our
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model is that it allows the long-run effects to differ from short-run effects. The model ex-

tends the familiar accelerated failure-time model by including lagged interpurchase times

as well as lagged covariates. Rewriting this model as an Error Correction Model [ECM]

allows us to distinguish the long-run from short-run effects, see Hendry et al. (1984).

The value of marketing mix-variables, like price and promotion, are likely to change

during interpurchase spells. In most marketing applications of duration models it is

assumed that covariates remain constant during spells. In this paper we follow a similar

approach as Gupta (1991) to allow for time-varying covariates in the hazard specification.

Additionally, many studies have emphasized the relevance of household heterogeneity. We

accommodate for unobserved differences across households by a latent class approach.

The outline of our paper is as follows. In Section 2, we discuss our dynamic duration

model. We show how the accelerated failure-time model can be extended to allow for

time-varying covariates and possibly differing long-run and short-run effects of marketing

variables. We discuss in detail how one can interpret the parameters and estimate them

using maximum likelihood. In Section 3, we apply our model to purchases of liquid

laundry detergent. One of our main empirical findings is that the short-run effects of

marketing mix variables are significantly different from the long-run effects. In Section 4,

we conclude our paper with a discussion of the main results with suggestions for further

research topics.

2 A Dynamic model for Interpurchase Times

In this section we put forward our dynamic model for interpurchase times, which enables

a separate evaluation of long-run and short-run effects of promotion and other marketing-

mix variables. In Section 2.1, we present the functional form of the hazard specification

and discuss the handling of time-varying covariates. In Section 2.2, we introduce autore-

gressive dynamics in our model. The interpretation of the dynamic structure is discussed

in Section 2.3. Finally, in Section 2.4, we consider parameter estimation.
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Figure 1: Graphical representation of purchase occasion di,n, interpurchase time ti,n and
time indexes of changes in covariates τl

2.1 Hazard Specification

Assume that a household i = 1, . . . , I purchases a certain product at time di,n, for n =

0, . . . , Ni over a certain period of time. The Ni interpurchase times of this household are

therefore defined by ti,n = di,n − di,n−1 with n = 1, . . . , Ni. To model the interpurchase

times we consider a hazard specification. Denote the hazard corresponding to the n-th

purchase decision of household i by

λi,n(t|xi,n(t), θi), (1)

where xi,n(t) denotes a vector of covariates explaining the hazard of household i for the

n-th purchase decision at time t and θi is a household-specific parameter vector. The

explanatory variables are a function of time t. Note that the variable t in xi,n(t) gives the

value of the covariates at time di,n−1 + t.

For modeling interpurchase times it a rather unrealistic to assume that the covariates

are constant during the spell, see Gupta (1991). The set of covariates will usually include

marketing instruments such as price and display. These variables usually change per week

or at most per day. Denote by τl for l = 0, .., L the time indexes where there is a change

in one of the covariates. For ease of exposition assume that the covariates are constant

over a period of a week. Week 1 then corresponds to the time interval [τ0, τ1]. Denote by

Ki,n(t) the week number corresponding to t time periods after the start of the n-th spell

of household i, this week starts at τKi,n(t)−1 and ends at τKi,n(t). In Figure 1 we give a

graphical representation of the purchase process. In this example we have a purchase in

weeks 2 and 4, in this case we would have Ki,n(0) = 2 and Ki,n(ti,n) = 4.

To derive the distribution of the interpurchase times we use the fact that the survivor
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function Si,n(t|xi,n(t), θi)) equals exp(−Λi,n(t|xi,n(t), θi)), where Λi,n(t|xi,n(t), θi) is the

integrated hazard function. This function is defined as

Λi,n(t|xi,n(t), θi) =

∫ t

0

λi,n(u|xi,n(u), θi)du. (2)

Note that the integrated hazard function depends on the whole path of xi,n(u) for u =

0, . . . , t, see Lancaster (1990) for a discussion. This integral can be decomposed by iden-

tifying intervals in which xi,n(t) is constant. We decompose the integral in three parts, (i)

from the start of the duration to the end of the corresponding week, (ii) weeks completely

contained in the duration, (iii) from the start of the final week to the end of the duration.

The integrated hazard can be decomposed as,

Λi,n(t|xi,n(t), θi) =

∫ τKi,n(0)−di,n−1

0

λi,n(u|xi,n(u), θi)du

+

Ki,n(t)−2∑

k=Ki,n(0)

∫ τk+1−di,n−1

τk−di,n−1

λi,n(u|xi,n(u), θi)du +

∫ t

τK(t)−1−di,n−1

λi,n(u|xi,n(u), θi)du, (3)

see Gupta (1991) for a similar approach.

As the computation of the integrated hazard function is computational intensive, it is

convenient to have a closed form expression for the individual elements of (3). Therefore,

in this paper we specify the hazard as an accelerated failure time hazard with a log-

logistic baseline hazard. This hazard specification allows for an analytical expression of

the integrated baseline hazard and allows for a non-monotonic hazard function. The

advantage of using an accelerated failure time specification is that it can be written in a

linear specification, see Kalbfleisch and Prentice (1980), Kiefer (1988) and Ridder (1990).

This facilitates the inclusion and interpretation of an autoregressive dynamic structure in

the model, see also Engle and Russell (1998) who consider a similar approach in modeling

financial transaction data. The hazard now becomes

λi,n(t|xi,n(t), θi) = exp(−xi,n(t)′βi)λ0(t exp(−xi,n(t)′βi)|δi), (4)

where λ0(t|δ) denotes the baseline hazard, which in case of the log-logistic distribution is

defined as

λ0(t|δ) =
δtδ−1

1 + tδ
. (5)
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and where θi = (βi, δi). For completeness, the hazard function becomes

λi,n(t|xi,n(t), θi) = exp(−xi,n(t)′βi)λ0(t exp(−xi,n(t)′βi))

=
δit

δi−1 exp(−xi,n(t)′βi)
δi

1 + tδi exp(−xi,n(t)′βi)δi
.

(6)

If the covariates for the n-th spell of household i are constant over the interval [a, b), the

integrated baseline hazard equals

∫ b

a

λi,n(u|xi,n(a), θi)du =

log[1 + bδi exp(−xi,n(a)′βi)
δi ]− log[1 + aδi exp(−xi,n(a)′βi)

δi ]. (7)

This result can be used to compute (3). The density function for observation ti,n can be

expressed in terms of the hazard function and integrated hazard function

fi,n(ti,n|xi,n(t), θi) = λi,n(ti,n|xi,n(t), θi)Si,n(ti,n|xi,n(t), θi), (8)

where Si,n(ti,n|xi,n(t), θi) = exp(−Λi,n(ti,n|xi,n(t), θi)) denotes the survival function.

2.2 Dynamics

The model discussed in the previous section is static, in the sense that interpurchase

times are only explained by current explanatory variables. It is however likely that the

interpurchase times of households are correlated over time. For example, promotional

activities may not only have an effect on current but also on future interpurchase times.

A very flexible specification of these dynamical patterns is obtained by adding lagged

interpurchase times and the value of the marketing instruments at the last purchase to

the vector of covariates. To explain the effect of lagged interpurchase times and lagged

covariates on current interpurchase time, we assume for the moment that the covariates

are constant during the spell, that is, xi,n(t) = xi,n. In this case, the survival function

simplifies to

Si,n(t|xi,n, θi) =
1

1 + [exp(−x′i,nβi)t]δi
. (9)
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Now consider the distribution of t∗i,n = δi(ln ti,n − x′i,nβi)

Pr[t∗i,n < E] = Pr[δi(ln ti,n − x′i,nβi) < E] = Pr[ti,n < exp(x′i,nβi + 1/δiE)]

= 1− S(exp(x′i,nβi + 1/δiE)) = 1− 1

1 + exp(1/δiE)δ
i

= 1− 1

1 + exp(E)
.

(10)

Hence, in the case of constant regressors, t∗i,n has a logistic density. As its density does

not depend on covariates and model parameters we can linearize the duration model as

follows

ln ti,n = x′i,nβi + σiui,n, (11)

where σi = 1/δi and where ui,n is logistic distributed such that E[ui,n] = 0.

The model in (11) is static, in the sense that interpurchase times are only explained by

current explanatory variables. To model dependence between the current interpurchase

time and the previous interpurchase time, we may allow for an autoregressive structure

of the error term, that is,

ui,n = ρiui,n−1 + ηi,n, (12)

which transforms (11) into

(ln ti,n − x′i,nβi) = ρi(ln ti,n−1 − x′i,n−1βi) + σiηi,n. (13)

The autoregressive parameter ρi is equal to the correlation E[(ln ti,n − x′i,nβi)(ln ti,n−1 −
x′i,n−1βi)], and ηi,n is again an unobserved error term for which we take the same distribu-

tional assumptions as for ui,n. To exclude explosive behavior of the interpurchase times

we impose that |ρi| < 1 for all i. To highlight the dynamic properties of (13), it can be

rewritten in the so-called error correction format, that is,

∆ ln ti,n = ∆x′i,nβi + (ρi − 1)(ln ti,n−1 − x′i,n−1βi) + σiηi,n, (14)

where ∆ is the first difference operator defined as ∆zi,n = zi,n − zi,n−1, where zi,n can

be ln ti,n or xi,n. The term ∆x′i,nβi concerns the short-run effects of a change in xi,n on

the interpurchase time, while the term −x′i,n−1βi in the so-called error correction part
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concerns the long-run effects. As these two terms involve the same parameter βi, from

(14) it is clear that model (13) assumes that short-run effects of changes in xi,n are the

same as the long-run effects. Therefore, we will refer to model (13) as the common factor

representation, thereby following the usual time series terminology, see Hendry et al.

(1984).

In many situations, it is however quite possible that for example promotional activities

have long-run effects which may differ in size or even in sign from short-run effects. To

allow for different short- and long-run effects in our model for interpurchase times, we

generalize (14) by replacing ∆x′i,nβi by ∆x′i,nαi resulting in the following error correction

duration model

∆ ln ti,n = ∆x′i,nαi + (ρi − 1)(ln ti,n−1 − x′i,n−1βi) + σiηi,n. (15)

Notice that we cannot estimate different short- and long-run effects of variables that do

not change during the time period considered, like for example household size, as then

∆xi,n will be zero and αi is not identified.

Another option to allow for correlation in interpurchase times is to add ln ti,n−1 as

an explanatory variable to (11). This, however, leads to a dynamic specification which is

difficult to interpret as the parameters do not correspond directly with short- and long-run

effects. Furthermore, it is easy to show that if one would include both xi,n−1 and ln ti,n−1

as explanatory variables in (11), the resulting model has the same representation as (15).

For notational convenience, we write (15) as

ln ti,n = x′i,nαi + ρi ln ti,n−1 + x′i,n−1(−αi − (ρi − 1)βi) + σiηi,n

= w′
i,nγi + σiηi,n,

(16)

where wi,n contains (xi,n, ln ti,n−1, xi,n−1) and γi = (αi, ρi,−αi − (ρi − 1)βi).

The hazard function in the case of the ECM specification can easily be obtained from

(6) by replacing xi,n(t)′βi by wi,n(t)′γi. Indeed, the results for the common factor model

(14) and the static model (11) can be obtained by restricting αi = βi and by setting

αi = βi and ρi = 0, respectively. The hazard corresponding with this dynamic duration

model has to be defined as a conditional hazard given the previous interpurchase time.
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This conditional hazard function for ti,n given ti,n−1 reads as

λi,n(t|wi,n(t), θi) =
δit

δi−1 exp(−wi,n(t)′γi)
δi

1 + tδi exp(−wi,n(t)′γi)δi
(17)

with θi = (γi, δi). The density function of the timing of the n-th purchase occasion of

household i given ti,n−1 is therefore

fi,n(t|wi,n(t), θi) = λi,n(t|wi,n(t), θi) exp(−Λi,n(t|wi,n(t), θi)), (18)

where Λi,n(t|wi,n(t), θi) is the integrated hazard function.

2.3 Interpretation of Parameters

In this section, we analyze the dynamic effects of the explanatory variables on interpur-

chase times. The short-run effect of a marketing instrument is defined as the instantaneous

effect of a (permanent) change on the interpurchase time. The long-run effect measures

the effect of a permanent change of a marketing instrument at time t′ on the interpurchase

times at t as t →∞. We focus on the error correction duration model (15) as this model

nests the common factor representation (13) (αi = βi) and the static model (11) (αi = βi

and ρi = 0).

First, we consider the derivative of ln ti,n with respect to xi,n, that is,

∂ ln ti,n
∂xi,n

= αi (19)

Hence, an ε change in xi,n, for example due to a price reduction or a promotional activity,

leads to αiε change in the log current interpurchase time. Note that if xi,n is for example

the log of a variable, we can interpret αi as an elasticity.

To analyze the effects of changes in the explanatory variables on future log interpur-

chase times, we can follow a similar procedure. The partial derivative of ln ti,n+1 with

respect to xi,n is given by

∂ ln ti,n+1

∂xi,n

= −αi − (ρi − 1)βi + ρi
∂ ln ti,n
∂xi,n

= (ρi − 1)(αi − βi). (20)

An ε change in xi,n leads to a change of ε(ρi − 1)(αi − βi) in ln ti,n+1. The derivative is

zero if αi = βi. Hence, the common factor specification (14) (and of course the static
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model in (11)) imposes that changes in xi,n have no effect on the next interpurchase time.

The same is true for the subsequent interpurchase time as

∂ ln ti,n+2

∂xi,n

= ρi
∂ ln ti,n+1

∂xi,n

= ρi(ρi − 1)(αi − βi). (21)

To derive the partial derivative of ln ti,n+k with respect to xi,n we note that for r > 2

∂ ln ti,n+r/∂xi,n = ρi∂ ln ti,n+r−1/∂xi,n and hence that

∂ ln ti,n+k

∂xi,n

= ρ
(k−1)
i (ρi − 1)(αi − βi). (22)

If |ρi| < 1 the effect of a change in xi,n on future interpurchase times will decline expo-

nentially and eventually it becomes zero.

From the above exercise it can already be understood that permanent changes in

interpurchase times can only be obtained when xi,n changes permanently. For example,

our model implies that only a permanent lower price can generate a permanent reduction

in interpurchase times. To derive the long-run effects of a permanent change in xi,n, we

apply repeated backward substitution to (15) and obtain

ln ti,n = ρi ln ti,n−1 + ∆x′i,nαi − (ρi − 1)x′i,n−1βi + σiηi,n

= ρ2
i ln ti,n−2 + ∆x′i,nαi + ρi∆x′i,n−1αi

− (ρi − 1)x′i,n−1βi − ρi(ρi − 1)x′i,n−2βi + σiηi,n + ρiσiηi,n−1

= ρn
i ln ti,0 +

n−1∑
j=0

ρj
i (∆x′i,n−jαi − (ρi − 1)x′i,n−j−1βi + σiηi,n−j),

(23)

where ti,0 denotes the pre-sample starting value of ti,n. As |ρi| < 1, ρn
i → 0 for large n

and the influence of ln ti,0 can be neglected. If we further assume that xi,n is fixed over

the purchase occasions, that is xi = xi,n = xi,n−j, j = 1, . . . ,∞, then for n → ∞, (23)

becomes equal to

ln ti,n =
∞∑

j=0

ρj
i (−(ρi − 1)x′iβi + σiηi,n−j) = x′iβi +

∞∑
j=0

ρj
iσiηi,n−j. (24)

Hence, as E[ηi,n−j] = 0 for all j, the long-run expectation of ln ti,n given xi is

E[ln ti,n|xi] = x′iβi. (25)
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If follows from (25) that the long-run effect of a permanent change in xi on the log

interpurchase time is βi. In sum, our error correction model for interpurchase times has

short-run effects αi and long-run effects βi. In the common factor model these effects

both equal βi and in the static model there are no dynamic effects.

2.4 Parameter Estimation

Differences in interpurchase times across households may partly be captured by includ-

ing household specific explanatory variables in the model. Furthermore, it is also not

unlikely that households may react differently to promotional activities. Therefore, we

have allowed for household-specific αi and βi parameters. Using similar arguments as

for brand choice, neglecting this household heterogeneity may lead to an overestimate of

the persistence (in our case ρi) in interpurchase times. See for example Keane (1997) for

a discussion of the effects of neglecting household heterogeneity on state dependence in

brand choice.

Estimation of these household-specific parameters may however be difficult if we do

not have enough observations for each household. To circumvent this problem, one usually

assumes that αi and βi are draws from a certain population distribution. This approach

is followed in the brand choice models in for example Kamakura and Russell (1989),

Chintagunta et al. (1991) and Gönül and Srinivasan (1993) among others.

A convenient choice is to assume that αi and βi are draws from a finite mixture

distribution which approximates the household heterogeneity distribution, see Jain et al.

(1994) and Allenby and Rossi (1999) among others. The density function for household i

then becomes

gi(ti,1, . . . , ti,Ni
|θ) =

M∑
m=1

pmhi(ti,1, . . . , ti,Ni
|θm), (26)

where M denotes the number of mixture components with 0 < pm < 1, m = 1, . . . , M and
∑M

m=1 pm = 1, and where θ collects the parameters and h(ti,1, . . . , ti,Ni
|θm) is the density
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function conditioned on segment m, defined as

hi(ti,1, . . . , ti,Ni
|θm) =

fi,1(ti,1|xi,1, θm)Si,Ni
(ti,Ni

|wi,Ni
(t), θm)

Ni−1∏
n=2

fi,n(ti,n|wi,n(t), θm), (27)

where the density function fi,n(ti,n|wi,n(t), θm) is given in (18). The second term, involving

the survivor function, is included for the last observation of household i when it is censored

from the right, see for example Kiefer (1988) for a discussion. If there is no censoring, one

can simply remove this term and replace the upper limit of the sum by Ni. The density

for the first observation is denoted by fi,1(ti,1|xi,1, θm). For the first interpurchase time we

do not observe the lagged interpurchase time. We choose to model the initial observation

using the long-run relation between interpurchase times and the marketing instruments

in (25). To be more specific the initial observation is modeled using

ln ti,1 = µ0,i + x′i,1βi + σ̃iηi,1, (28)

where ηi,1 has a logistic distribution. Note that we allow for a different intercept and scale

parameter for the initial observation.

The parameters of duration models generally can be estimated using maximum likeli-

hood [ML]. The log likelihood function is given by

`(θ) =
I∑

i=1

ln(gi(ti,1, . . . , ti,Ni
|θ)) (29)

where gi(ti,1, . . . , ti,Ni
|θ) is defined in (26). This log likelihood function can be maximized

using standard numerical optimization algorithms. In case of household heterogeneity

one may opt for the EM-algorithm of Dempster et al. (1977). The resulting maximum

likelihood estimator denoted by θ̂ is normally distributed with mean θ and the information

matrix as covariance matrix. To compute this covariance matrix, we take the outer

product of gradients.

Parameter estimates for the static duration model (11) and the common factor du-

ration model (14) can be obtained in a similar way. As both models are nested in the
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error correction model (15), we can use standard likelihood ratio tests to compare the

three models. For instance, under the parameter restriction αm = βm for m = 1, . . . , M

the error correction duration model (15) simplifies to the common factor model (14). To

compare both models, we can perform a likelihood ratio test for the hypothesis αm = βm.

The corresponding likelihood ratio test statistic, is asymptotically χ2(J) distributed under

the null hypothesis, where J denotes the number of parameter restrictions.

It should be stressed that the likelihood ratio test procedure to compare two model

specifications, is only valid if the two models under consideration are nested, in this

case they should have the same number of mixture components M to describe household

heterogeneity. If the number of mixture components is different in the two model specifica-

tions, the test includes a test for the number of mixture components M . Likelihood ratio

tests for the number of mixture components M are not asymptotically χ2 distributed. To

illustrate this, consider a common factor model with two mixture components (M = 2).

Under the restriction β1 = β2 the mixing proportion p1 is not identified and the likeli-

hood ratio test statistic for β1 = β2 is not asymptotically χ2 distributed under the null

hypothesis. This phenomenon is known as the Davies (1977) problem. We will abstract

from a further analysis of this issue here, and in our empirical work we will use the BIC

to determine the value of M following the approach of Jain et al. (1994).

3 Application

In this section we illustrate the dynamic duration models on a scanner panel on purchases

of liquid detergent. In Section 3.1, we discuss the data set. In Section 3.2, we consider the

maximum likelihood estimates of various duration models and we examine the presence

of dynamic effects in interpurchase times. In Section 3.3, we use the estimation results to

analyze the short-run effects of promotions on interpurchase times.

3.1 The Data

The data we use are A.C. Nielsen household scanner panel data on purchases of liquid de-

tergent in Sioux Falls, South Dakota. A subset of these data are analyzed in Chintagunta
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and Prasad (1998) using a Dynamic McFadden Model. In fast moving consumer goods

markets marketing efforts tend to be constant during a week, where the week is defined

from Wednesday to Tuesday. We therefore aggregate our data to a weekly level. In case

a household makes several purchases within a week, we use the volume bought weighted

purchase date.

The sample contains 786 households with, aggregated to a weekly level, 8239 purchases

from August 1986 to July 1988. Of the 35 different brands of detergent bought in this time

frame, we only have complete information on marketing efforts of 13 brands. These 13

brands account for 86% of the total market. Households are selected to purchase only from

these 13 brands. For each purchase occasion, we know the time since the last purchase of

detergent and the volume of detergent bought. Furthermore, for each week we know the

shelf price (dollars/32oz.) of these brands and which brands are featured or displayed. All

marketing instruments are aggregated over available stores in the region and per week.

The display and feature variables therefore represent the percentage of stores featuring

the brand, or having the brand on display. Finally, we know the household size, household

income and the volume purchased on the previous purchase occasion.

The interpurchase times not only depend on marketing efforts at the purchase occasion,

they are also influenced by all efforts in the weeks in between purchases. For these weeks

we do not know which brand will be bought. Following Gupta (1991) we use household

specific brand shares to obtain marketing mix-variables at the category level. These

category level variables are also used for the weeks at which a purchase is made. Note

that by using household specific shares we exclude the case that the prices of brand A are

used to explain interpurchase times of a specific household when in fact this household is

always buys brand B.

3.2 Estimation Results

We focus on the dynamic effects of promotions on interpurchase times for the detergent

product category. We do not intend to model brand choice and purchase quantity. To an-

alyze interpurchase times, we consider the static duration model (11), the common factor
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duration model (13), and the error correction duration model (15). As explanatory vari-

ables we use household size, household income and the volume purchased on the previous

purchase occasion (divided by 32 oz.). The latter variable is used as a proxy for ”regular”

and ”fill-in” trips and to take into account the effects of household inventory behavior on

purchase timing, respectively, see also Chintagunta and Prasad (1998). Furthermore, we

include the regular price and price cuts in dollars per 32 ounce. Finally three variables

are used to indicate whether brands were on display or were featured on a line or major

advertisement, respectively.

We first consider models without household heterogeneity (M = 1). Table 1 displays

the maximum likelihood estimates of the parameters of the static duration model (11),

the common factor duration model (14) and the error correction duration model (15).

This table also contains the maximum likelihood values and the values of the familiar

Akaike [AIC] and Bayesian Information Criteria [BIC]. The second column of this table

displays the parameter estimates for the static model. It shows that, as expected, house-

hold size has a significantly negative effect on interpurchase times. Household income also

negatively influences interpurchase times. Wealthier and larger households tend to buy

liquid detergent more often. Not surprisingly, the volume purchased on the previous pur-

chase occasion has a significant positive effect. Display, features and price cuts naturally

negatively influence interpurchase times. Line advertisements do not have a significant

impact. Regular price has a positive effect. A high regular price seems to reduce the

propensity to buy and thereby increases interpurchase times.

The third column shows the parameter estimates for the common factor duration

model (14). The autoregressive coefficient ρ is equal to 0.35 and hence there is significant

correlation in interpurchase times. The signs of the parameters are the same as those for

model (11). However, the magnitude of the effects of the marketing mix variables change.

The effects of price and display increase while the effects of line and major advertisements

decrease. The estimated standard errors of these parameters, however, are roughly the

same as in the static model. There is more evidence for significant effects of price and

display on log interpurchase times. In the common factor model no advertisement variable
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remains significant. The difference in maximum likelihood values between the static and

the common factor model indicates that the restriction ρ = 0 is overwhelmingly rejected

at the 5% level of significance (the 95% percentile of the χ2(1) distribution is 3.84).

The final column of Table 1 displays the parameter estimates of the error correction du-

ration model (15) which allows for different short-run and long-run effects of explanatory

variables. As household size and income are constant over the time period considered, we

cannot estimate a different short-run and long-run effect of this variable. The likelihood

ratio statistic to compare the error correction model with the common factor model equals

−2× (21 707.65− 21 720.67) = 26.04, which is significant at the 5% level of significance

(the 95% percentile of the χ2(6) distribution equals 12.59). This suggests that there are

different short-run and long-run effects of the explanatory variables. If we consider the

estimated standard errors of the parameters, we see that the short-run effect of display,

denoted by α, is significant, while the long-run effect, denoted by β, is not. Major adver-

tisements only have long term effects. Regular price, price cuts and the volume previously

bought have short-term as well as long-term effects. The estimate of the ρ parameter does

not differ much from that of the common factor specification.

In the models discussed so far, we assumed that there was no household heterogeneity.

Table 2 shows the maximum likelihood estimates of the three duration models, where we

now do allow for such heterogeneity. Due to identification issues discussed before, it is

not possible to test for the number of mixture components using standard χ2-distributed

likelihood ratio test statistics. To determine the number of mixture components, we follow

the strategy by Jain et al. (1994) and add extra mixture components until the BIC stops

decreasing.

For both dynamic models and the static model the information criterions indicate that

three mixture components are sufficient. Table 2 shows the estimated average effect of the

explanatory variables on log interpurchase times, that is θ̂ =
∑3

m=1 p̂mθ̂m, where θ again

denotes a general parameter. In general, for all three model specifications the signs of the

effects are the same as for the models without household heterogeneity in Table 1. Only

for line advertisements do we observe a change in sign, but this variable is not significant
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in all models.

The difference in the maximum likelihood values of the static and the dynamic model

shows again that the static specification (ρ = 0) is clearly rejected at the 5% level of

significance. Furthermore, the estimates of the effects are about the same as for the

model without household heterogeneity.

The autoregressive coefficient is estimated to be smaller than that for the specifica-

tion without heterogeneity. Hence, neglecting household heterogeneity leads to a over-

estimation of the persistence in log interpurchase times. In both dynamic models the

autoregressive coefficient remains significantly different from zero. Furthermore note that

the reported estimate concerns the population average. Unreported results show that

there exists a segment of households (9% of the population) with a considerably stronger

persistence.

The final column of Table 2 displays the estimation results for the error correction spec-

ification with different short-run and long-run effects. The likelihood ratio test statistic to

compare the common factor model with this model equals −2× (21 004.38−21 021.85) =

34.94, which is significant when compared to the 95% percentile of the χ2(3 × 6) distri-

bution. This indicates that the short-run effects of the explanatory variables are again

significantly different from the long-run effects. If we consider the estimated standard

errors, we notice that of the marketing instruments only the regular price and price cuts

have a significant long-run and short-run effect. Display only has a significant short-run

effect while on avererage advertisements do not significantly influence interpurchase times.

Note that we have only discussed the average effects. For example in the third segment

(34% of the population) there is a significant short-run effect of major advertisements.

3.3 Short-Run Effects of Promotions

The estimated duration models can be used to analyze the short-run effects of promotional

activities on interpurchase times. In this section we analyze the effects of a price reduction,

a display, and a feature on future interpurchase times. The results are based on the

parameter estimates of the error correction model (15) with household heterogeneity as
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displayed in the final column of Table 2.

Figure 2 shows the effect of a unit price cut at n = 1 on current and future log

interpurchase times. The solid line in the figure displays the partial derivatives of log

interpurchase times to the price cut for the current and 9 future interpurchase occasions,

as described in Section 2.3. We see that the price reduction has a strong negative effect

on the current interpurchase time. The effect on future purchase however is almost zero.

This can also be seen in Table 2 as the short-run effect almost equals the long-run effect.

The two dotted lines display the cumulative and average effect, that is, the sum of the past

and current derivatives and the sum of the past and current derivatives divided by the

number of purchases, respectively. After 10 purchases the cumulative effect is negative,

which means that the total effect of the price reduction is negative.

Figure 3 shows the effect of a display for current and future log interpurchase times.

A display at n = 1 has a negative effect on the current log interpurchase, but a strong

positive effect on the next log interpurchase time. After a display households tend to

delay their next purchases for liquid detergent. After 4 purchases, the effect of the display

is almost zero. The cumulative effect after 10 purchases is negative, which means that

there is a total negative effect of a display.

Finally, Figure 4 shows the effect of a major advertisement on current and future log

interpurchase times. A feature has a negative effect on the current and next log interpur-

chase times. Again, after 4 purchases the effect of the feature is almost zero. Contrary to

the effects of display, the direct effect of a major advertisement is not compensated by an

effect of an opposite sign on future log interpurchase times. The cumulative effect of such

an advertisement is therefore large. After 10 periods the average effect is still relatively

large.

4 Conclusion

In this paper we proposed a dynamic model for interpurchase times, in which we can

disentangle short-run from long-run effects of marketing variables. We discussed repre-

sentation, interpretation and estimation issues. We illustrated our model for purchases on
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liquid detergents and we found that the short-run effects of marketing-mix variables are

significantly different from the long-run effects. Additionally, we showed that our model

can be used to evaluate marketing strategies.

There are at least two potentially fruitful areas for further research. The first concerns

the dynamic specification of the model. In this paper we relied on first order dynamics,

but it may be that higher order dynamics would be more appropriate. One strategy is now

to find a variety of models with different lag structures and to use likelihood ratio tests

to select a final specification. Alternatively, one could develop diagnostic test statistics

which could be used to examine remaining residual autocorrelation.

A second topic of further research amounts to extending the approach followed in

Chintagunta and Prasad (1998), where interpurchase times are combined with brand

choice. Indeed, one could construct models for long-run and short-run effects of marketing

mix variables on both marketing performance measures jointly.
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Table 1: ML parameter estimates for the static duration model, the common factor
model and the error correction duration model, without household heterogeneity.
Standard errors appear in parentheses.

static common factor error correction

α parameters

regular price (32 oz.) 1.079 (0.263)
price cut (32 oz.) −2.278 (0.489)
display −3.743 (0.690)
line −0.606 (1.905)
major −1.412 (0.859)
volume prev. (32 oz.) 0.118 (0.006)

β parameters

constant 1.044 (0.095) 1.071 (0.131) 1.063 (0.134)
regular price (32 oz.) 0.606 (0.055) 0.638 (0.076) 0.615 (0.078)
price cut (32 oz.) −1.761 (0.507) −2.031 (0.481) −1.979 (0.842)
display −2.154 (0.659) −3.977 (0.665) −0.378 (1.116)
line −1.326 (1.984) −0.346 (1.903) −4.598 (3.312)
major −2.692 (0.900) −1.442 (0.838) −5.026 (1.595)
volume prev. (32 oz.) 0.130 (0.006) 0.121 (0.006) 0.139 (0.010)
household income −0.022 (0.004) −0.023 (0.005) −0.023 (0.005)
household size −0.190 (0.008) −0.194 (0.011) −0.198 (0.011)

µ0 0.515 (0.040) 0.496 (0.041) 0.492 (0.042)
δ0 1.614 (0.049) 1.619 (0.050) 1.610 (0.050)
δ1 2.013 (0.020) 2.139 (0.022) 2.144 (0.022)
ρ 0.348 (0.012) 0.344 (0.012)

log likelihood −22 131.57 −21 720.67 −21 707.65
BIC 5.3855 5.2869 5.2903
AIC 5.3753 5.2758 5.2741
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Table 2: ML parameter estimates for the static duration model, the common factor
and the error correction duration model with household heterogeneity.1 Standard
errors appear in parentheses.

static common factor error correction

α parameters

regular price (32 oz.) 0.862 (0.287)
price cut (32 oz.) −2.121 (0.599)
display −4.834 (0.827)
line 0.459 (2.533)
major −0.375 (1.030)
volume prev. (32 oz.) 0.112 (0.007)

β parameters

constant 1.464 (0.176) 1.455 (0.187) 1.412 (0.191)
regular price (32 oz.) 0.594 (0.103) 0.603 (0.109) 0.607 (0.112)
price cut (32 oz.) −1.831 (0.566) −1.825 (0.571) −2.137 (0.778)
display −4.016 (0.784) −4.368 (0.777) −1.894 (1.152)
line 0.327 (2.499) 0.321 (2.458) −1.785 (3.819)
major −1.270 (1.016) −1.013 (1.007) −2.593 (1.634)
volume prev. (32 oz.) 0.113 (0.006) 0.113 (0.006) 0.124 (0.008)
household income −0.031 (0.004) −0.031 (0.005) −0.034 (0.005)
household size −0.165 (0.009) −0.163 (0.010) −0.164 (0.010)

µ0 0.188 (0.038) 0.185 (0.038) 0.194 (0.039)
δ0 1.970 (0.073) 1.964 (0.070) 1.949 (0.073)
δ1 2.301 (0.028) 2.299 (0.028) 2.307 (0.028)
ρ 0.051 (0.016) 0.046 (0.016)

p1 0.092 (0.011) 0.563 (0.023) 0.567 (0.023)
p2 0.350 (0.053) 0.094 (0.013) 0.091 (0.013)
p3 0.558 (0.079) 0.344 (0.035) 0.342 (0.035)

log likelihood −21 034.89 −21 021.85 −21 004.38
BIC 5.1478 5.1479 5.1633
AIC 5.1154 5.1130 5.1131

1 The household heterogeneity is modeled by three mixture components, that is M = 3.
2 The columns display θ̂ =

∑3
m=1 p̂mθ̂m, where θ denotes a general parameter, and standard

errors are computed using the delta method, see Greene (1993, p. 297).
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Figure 2: The effect of a unit price cut at n = 1 on current
and future interpurchase times.
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Figure 3: The effect of a display at n = 1 on current and
future interpurchase times.
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Figure 4: The effect of a major advertisement at n = 1 on
current and future interpurchase times.
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