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abstract

Risk managers use portfolios to diversify away the unpriced risk of individual
securities. In this article we compare the benefits of portfolio diversification for
downside risk in case returns are normally distributed with the case of fat-tailed
distributed returns. The downside risk of a security is decomposed into a part
which is attributable to the market risk, an idiosyncratic part, and a second
independent factor. We show that the fat-tailed-based downside risk, measured
as value-at-risk (VaR), should decline more rapidly than the normal-based VaR.
This result is confirmed empirically.
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Risk managers use portfolios to diversify away the unpriced risk of individual
securities. This topic has been well studied for global risk measures like the

variance [see, e.g., the textbook by Elton and Gruber (1995, chap.4)]. In this article

we study the benefits of portfolio diversification with respect to an extreme

downside risk measure known as the zeroth lower partial moment and its

inverse; where the inverse of the zeroth lower partial moment is better known

as the value-at-risk VaR measure. Choice theoretic considerations for this risk

measure are offered in Arzac and Bawa’s (1977) analysis of the safety-first criter-

ion. In Gourieroux, Laurent, and Scaillet (2000), the implications under the
assumption of normally distributed returns are investigated, while Jansen,

Koedijk, and de Vries (2000) implement the safety-first criterion for heavy-tailed

distributed returns. There is some concern in the literature that the VaR measure

lacks subadditivity as a global risk measure. As a measure for the downside risk,
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however, the VaR exhibits subadditivity if one evaluates this criterion sufficiently

deep in the tail area.1

The portfolio diversification effects for the downside risk are evaluated in

terms of the diversification speed. The diversification speed is measured in two
different ways. Let the ‘‘VaR diversification speed’’ be the rate at which the VaR

changes as the number of assets k included in the portfolio increases. Usually the

safety-first criterion and the VaR criterion are evaluated at a fixed probability level.

It is also possible to do the converse analysis by fixing the VaR level and letting the

probability level change as the number of assets k increases. This gives what we

term the ‘‘diversification speed of the risk level.’’ We will study both concepts.

Much of the theoretical literature in finance presumes that the returns are

normally distributed. For a host of questions, this is a reasonable assumption to
make. Empirically it is well known that the return distributions have fatter tails

than the normal [see, e.g., Jansen and De Vries (1991)]. For the downside risk

measures, this data feature turns out to make a crucial difference. The diversifica-

tion speeds are shown to be quite different for the cases of the normal and the fat-

tailed distributions. The VaR diversification speed is higher for the class of (finite

variance) fat-tailed distributions in comparison to the normal distribution, but is

lower with respect to the diversification speed of the risk level. The intuition for

this result is as follows. Start with the latter result. The tails of the normal density
go down exponentially fast, while the tails of fat-tailed distributions decline at a

power rate (this is the defining characteristic of these distributions). Since an

exponential function eventually beats any power, it stands to reason that the

diversification speed of the risk level under normality is larger. The VaR diversi-

fication speed measures the speed in terms of quantiles, which are the inverse of

the probabilities. Taking the inverse reverses the diversification speed.

Consider, for example, the case of the normal versus Student’s t-distributed

returns with v degrees of freedom. It is well known that the VaR diversification
speed for the normal distribution follows the square root rule. In contrast, the

Student’s t VaR diversification speed is 1� 1=v. This is greater than 1/2 if v > 2

(guaranteeing a finite variance). This intuition is made rigorous below by means

of the celebrated Feller convolution theorem for heavy-tailed (i.e., regularly

varying) distributions.

For the empirical counterpart of this analysis, we briefly review the semipara-

metric approach to estimating the (extreme) downside risk. The heavy-tail feature is

captured by a Pareto distribution-like term, of which one needs to estimate the tail
index (the equivalent of the degrees of freedom v in case of Student’s law) and a

scale coefficient. We consider estimation by means of a pooled dataset on the basis

of the assumption that the tail indexes of the different securities and risk compo-

nents are equal. We do allow for heterogeneity of the scale coefficients, though.

Most securities’ distributions display equal hyperbolic tail coefficients, but do differ

considerably in terms of their scale coefficients [see Hyung and de Vries (2002)].

1 At least this holds for the normal distribution and the class of fat-tailed distributions investigated in this

article.
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Within this framework it is possible to calculate the diversification effects beyond

the sample range and for hypothetically larger portfolios if we make some assump-

tions regarding the market model betas and scale coefficients of the orthogonal risk

factors. The diversification speeds are analyzed graphically.
We start our essay by reviewing the Feller’s convolution theorem for distri-

butions with heavy tails. Subsequently we study the diversification problem in

more detail by adding the market factor. The relevance of the theoretical results

for the downside risk portfolio diversification question is demonstrated by an

application to Standard & Poor’s (S&P) stock returns.

1 DIVERSIFICATION EFFECTS AND THE FELLER CONVOLUTION
THEOREM

In this section we only consider securities that are independently distributed. In
the next section this counterfactual assumption, as least as far as equities are

concerned, is relaxed by allowing for common factors. Let Ri denote the logarith-

mic return of the ith security. Suppose the Rif g are generated by a distribution

with heavy tails in the sense of regular variation at infinity. Thus, far from the

origin, the Pareto term dominates:

Pr Ri � �xf g ¼ Aix
��½1þ oð1Þ�, � > 0, Ai > 0 ð1Þ

as x ! 1. The Pareto term implies that only moments up to � are bounded and

hence the informal terminology of heavy tails. In contrast, the normal distribution
has all moments bounded thanks to the exponential tail shape. Distributions like

the Student’s t, Pareto, and nonnormal sum-stable distributions all have regularly

varying tails. Downside risk measures like the VaR, that is, at the desired prob-

ability level d: Pr Ri � �VaRf g ¼ d, directly pick up differences in tail behavior.

An implication of the regular variation property is the simplicity of the tail

probabilities for convoluted data. Suppose the Rif g are generated by a heavy-

tailed distribution that satisfies Equation (1). From Feller’s theorem (1971, VIII.8),

the distribution of the k sum satisfies2

Pr
Xk
i¼1

Ri � �x

( )
¼ kAx��½1þ oð1Þ�, as x ! 1:

From this, one can derive the diversification effect for the equally weighted

portfolio R ¼ 1
k

Pk
i¼1 Ri [see Dacorogna et al. (2001)]. The following first-order

approximation for the equally weighted portfolio diversification effect regarding
the downside risk obtains3

2 Note that in this analysis x ! 1, while k is a fixed number.
3 Note that this diversification result only holds as x!1. Garcia, Renault, and Tsafack (2003) show that for

symmetric stable distributions, the diversification result applies anywhere below the median. This has to

do with the fact that the sum stable distributions are self-additive throughout their support, while this

only applies in the tail region for the class of fat-tailed distributions.
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Pr
1

k

Xk
i¼1

Ri � �x

( )
� k1��Ax��: ð2Þ

Under the heterogeneity of the scale coefficients Ai, the equivalent of Equation (2)
reads

Pr
1

k

Xk
i¼1

Ri � �x

( )
� k��

Xk
i¼1

Ai

 !
x��: ð3Þ

To summarize, if at a constant VaR level x, one increases the number k of

securities included in the portfolio, this decreases the probability of loss by k1-�

[see Equation (2)].

The other case is where the Ri are independent standard normally distributed

Pr
1

k

Xk
i¼1

Ri � �x

( )
�Nð0, 1

k
Þ:

The following is the equivalent of Equation (1) for the normal distribution

Pr Ri � �xf g ¼ 1

x

1ffiffiffiffiffiffi
2p

p expð� 1

2
x2Þ½1þ oð1Þ� as x ! 1:

For the equally weighted portfolio it thus holds

Pr
1

k

Xk
i¼1

Ri � �x

( )
¼ Pr

1ffiffiffi
k

p Ri � �x

� �
’ 1

x
ffiffiffi
k

p 1ffiffiffiffiffiffi
2p

p expð� 1

2
kx2Þ: ð4Þ

It follows that under normality

d ln Pr

d ln k
’ � 1

2
� 1

2
x2k, ð5Þ

while under the fat-tail model from Equation (2),

d ln Pr

d ln k
’ 1� �: ð6Þ

Hence, for sufficiently high but fixed k, the normal distribution implies a higher

diversification speed of the risk level.

Next, consider holding the probability constant but letting the VaR level

change, which is the typical case considered under the safety-first criterion, to

determine the VaR diversification speed. Thus, in the case of the normal model,

we are interested in comparing VaR levels t and s such that

Pr Ri � �tf g ¼ Pr
1

k

Xk
i¼1

Ri � �s

( )
¼ Pr

1ffiffiffi
k

p Ri � �s

� �
: ð7Þ
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Using the additivity properties of the normal distribution, or equivalently using

Equation (4) on both sides of Equation (7), it is immediate that

s ¼ tffiffiffi
k

p

so that the normal-based VaR diversification speed reads

d ln s

d ln k
¼ � 1

2
: ð8Þ

For the fat-tailed model, the equivalent of Equation (7) is

Ait
�� ¼ Pr Ri � �tf g ¼ Pr

1

k

Xk
i¼1

Ri � �s

( )
¼ k��

Xk
i¼1

Ai

 !
s��:

Solving for s gives

s ¼ t

k

Pk
i¼1 Ai

Ai

 !1=�

:

Furthermore, if the scale coefficients are identical, this simplifies to

s ¼ t

k1�1=�
:

So that if � > 2, that is, when the variance exists,

d ln s

d ln k
¼ �ð1� 1

�
Þ < � 1

2
: ð9Þ

Compare Equation (9) to Equation (8). If � > 2, then the VaR diversification speed

is higher for fat-tailed distributed returns than if the returns were normally

distributed.

2 DIVERSIFICATION EFFECTS IN FACTOR MODELS

We relax the assumption of independence between security returns and allow for

nondiversifiable market risk. The market risk reduces the benefits from diversi-

fication to the elimination of the idiosyncratic component of the risk. First con-

sider a single index model in which all idiosyncratic risk is assumed independent

from the market risk R,

Ri ¼ biRþQi, ð10Þ

and where R is the (excess) return on the market portfolio, bi is the amount of

market risk, and Qi is the idiosyncratic risk of the return on asset i. The idiosyn-

cratic risk may be diversified away fully in arbitrarily large portfolios and hence is
not priced. But the cross-sectional dependence induced by common market risk

factors has to be held in any portfolio.
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We apply Feller’s theorem again for deriving the benefits from cross-

sectional portfolio diversification in this single index model. Consider an

equally weighted portfolio of k assets. Let �� ¼ 1
k

Pk
i¼1 �i. The case of unequally

weighted portfolios is but a minor extension left to the reader for consideration
of space. In this single index model, the Qi are cross-sectionally independent

and, moreover, are independent from the market risk factor R. Suppose, in

addition, that the Qi satisfy Pr Qi � �xf g � Aix
�� for all i, and that

Pr R � �xf g � Arx
��. The diversification benefits from the equally weighted

portfolio regarding the downside risk measure for the case of homogeneous

scale coefficients Ai = A then follow as

Pr
1

k

Xk
i¼1

Ri � �x

( )
¼ k1��Ax��½1þ oð1Þ� þ b

�
Arx

��½1þ oð1Þ�, ð11Þ

as x ! 1. If the scale coefficients are heterogeneous, the equivalent of Equation

(11) reads

Pr
1

k

Xk
i¼1

Ri � �x

( )
� k��

Xk
i¼1

Ai

 !
x�� þ b

�
Arx

��: ð12Þ

In large portfolios one should see that almost all downside risk is driven by the

market factor, if � > 1,

Pr
1

k

Xk
i¼1

Ri � �x

( )
� b

�
Arx

��

for large, but finite k.

In general, one finds the single index model does not hold exactly due to the

fact that cov½Qi,Qj� is typically nonzero for off-diagonal elements as well. Thus,

though the Qi may be independent from the market risk factor R (they are

uncorrelated with R by construction), they are typically not cross-sectionally
independent from each other. This case is usually referred to as the market

model. For example, let there be one other common factor F. This factor is assumed

independent from R, but the cov½Qi, F�=cov½F, F� ¼ �i. Let � ¼ 1
k

Pk
i¼1 �i, and

assume that Pr F � �xf g � Af x
��. Then, by analogy with the foregoing results,

Pr
1

k

Xk
i¼1

Ri � �x

( )
� k��

Xk
i¼1

Ai

 !
x�� þ b

�
Arx

�� þ ��Af x
��: ð13Þ

To study the case of nonidentical a in Equation (12), one has to consider two

cases:

Case 1: �r ¼ �1 ¼ . . . ¼ �j < �jþ1 � �jþ2 � . . . � �k:

Case 2: �1 ¼ . . . ¼ �j < �jþ1 � �jþ2 � . . . � �k and �r > �1.
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Here, �r stands for the tail index of the market portfolio return, and the �i are

the indices of the idiosyncratic parts of the security i return. Then corresponding

expressions to Equation (12) are for Case 1,

Pr
1

k

Xk
i¼1

Ri � �x

( )
� k��r

Xj
i¼1

Ai

 !
x��r þ b

�r
Arx

��r ,

and for Case 2,

Pr
1

k

Xk
i¼1

Ri � �x

( )
� k��1

Xj
i¼1

Ai

 !
x��1 :

Next, consider holding the probability constant, but let the VaR level change
in Equation (12) as the number of assets k increases. From Equation (12), we have

Pr
1

k

Xk
i¼1

Ri � �x

( )
� k��

Xk
i¼1

Ai þ
Xk
i¼1

bi

 !�

Ar

" #
x��:

By first-order inversion [cf. De Bruijn’s theorem in Bingham, Goldie, and Teugels
(1987)] one obtains

VaR ¼ x ¼ 1

k

Xk
i¼1

Ai þ
Xk
i¼1

bi

 !�

Ar

" #1=�
�p�1=�, ð14Þ

and where �p is the fixed probability level. With homogeneous scale coefficients,

we may simplify this to

VaR ¼ 1

k1�1=�
Aþ

Pk
i¼1 bi

� ��
k

Ar

24 351=�

�p�1=�:

This should be compared with the results from the previous section on the VaR

diversification speed, where the part stemming from the market factor was

absent. In particular, we find

d ln VaR

d ln k
¼ �1þ 1

�

A

Aþ
Pk

i¼1
bi

� ��
k Ar

,

which is smaller, that is, gives a higher speed, than the simple �1þ 1=� from

before.

3 ESTIMATION BY POOLING

To investigate the relevance of the above downside risk diversification theory, we

need to estimate the various downside risk components. To explain the details of

the estimation procedure, consider again the simple setup in Equation (3). To be
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able to calculate the downside risk measure, one needs estimates of the tail index

a and the scale coefficients Ai. A popular estimator for the inverse of the tail index

is Hill’s (1975) estimator. If the only sources of heterogeneity are the scale coef-

ficients, one can pool all return series. Let R11, . . . , R1n, . . . , Rk1, . . . , Rknf g be the
sample of returns. Denote by Z(i) the ith descending order statistic from

R11, . . . , R1n, . . . , Rk1, . . . , Rknf g. If we estimate the left tail of the distribution, it

is understood that we take the losses (reverse signs). The Hill estimator reads

d1=� ¼ 1

m

Xm
i¼1

ln ZðiÞ
� �

� ln Zðmþ1Þ
� �

: ð15Þ

This estimator requires a choice of the number of the highest-order statistics m to

be included, that is, one needs to locate the start of the tail area. We implemented

the subsample bootstrap method proposed by Danielsson et al. (2000) to deter-

mine m. The estimator for the scale A when Ai ¼ A for all i is

Â ¼ m

kn
ðZðmþ1ÞÞ�̂:

Note that m=nk is the empirical probability associated with Zðmþ1Þ, and the

estimator Â follows intuitively from Equation (1). Under the heterogeneity of Ai

one takes

Âi ¼
mi

n
ðZðmþ1ÞÞ�̂,

where mi is such that

Rið1Þ � . . . � RiðmiÞ � Zðmþ1Þ � Riðmiþ1Þ � . . . � RiðnÞ:

Note that
Pk

i¼1 mi ¼ m. This implies that by the pooling method we obtain exactly
the same portfolio probabilities whether or not one assumes (counterfactually

incorrect) identical or heterogeneous scale coefficients, since

k��̂
Xk
i¼1

Âi

 !
x��̂ ¼ k��̂

Xk
i¼1

mi

n
ðZðmþ1ÞÞ�̂

 !
x��̂

¼ k��̂

Pk
i¼1 mi

� �
n

ðZðmþ1ÞÞ�̂x��̂

¼ k1��̂Âx��̂:

We can adapt this pooling method to the market model with little modifica-

tion. Pooling the series Rf g, Q1f g, . . . , Qkf g, one can use the same procedure as in

114 Journal of Financial Econometrics



the case of cross-independence.4 For the estimation of the tail index one again

uses Equation (15), where in this case Zf g ¼ Rr1, . . . , Rrn, Q11, . . . , Q1n, . . . ,f
Qk1, . . . , Qkng. Estimators for the scales are

Âi ¼
mi

n
ðZðmþ1ÞÞ�̂,i ¼ 1; . . . ; k and r,

where mi is such that

Xið1Þ � . . . � XiðmiÞ � Zðmþ1Þ � Xiðmiþ1Þ � . . . � XiðnÞ,

where Xi can be R or Qi.

In case the tail indexes differ across securities and risk factors, the above can

be easily adapted to estimation on individual series. There is, however, consider-

able evidence that the tail indexes are comparable for equities from the S&P 500

index [see, e.g., Jansen and De Vries (1991) and Hyung and De Vries (2002)].

Therefore we decided to proceed on the basis of the assumption that the tail

indexes are equal.

4 EMPIRICAL ANALYSIS OF THE DIVERSIFICATION SPEED

Wenow apply our theoretical results to the daily returns of a set of stocks. In order to

estimate the parameters of the market model we choose the Standard & Poor’s 500

index as a representation of the market factor. This is certainly not the market port-
folio as in the capital asset pricing model (CAPM); nevertheless, the S&P 500 index

represents about 80% of the total market capitalization. To see the effects of portfolio

diversification,we choose 15 stocks arbitrarily from the S&P 100 index inMarch 2001.

We use the daily returns (close-to-close data), including cash dividends. The data

were obtained from Datastream. The data span runs from January 2, 1980, through

March 6, 2001, giving a sample size of n= 5,526. Thusmore than 20 years of daily data

are considered, including the short-lived 1987 crash. All results are in terms of the

excess returns above the risk-free interest rate (three-month U.S. Treasury bills).
The summary statistics for each stock return series and the market factor are

given in Table 1. On an annual basis, the excess returns hover around 7.5% and

have comparable second moments. The excess returns all exhibit considerably

higher than normal kurtosis. This latter feature is also captured by the estimates

of the tail index a in Table 2. In this table we report tail index and scale estimates

using the individual series, counter to the pooling method outlined above. This is

done in order to show that the tail indexes are indeed rather similar, while there is

considerable variation in the scales. This motivates the single-tail index, hetero-
geneous scale model implemented in the other tables. Table 2 also gives the beta

estimates for the market model.

4 The determination of the parameters bi and the residualsQi entering in the definition of the market model

is done by regressing the stock returns on the market return. The coefficient bi is thus given by the

ordinary least squares estimator, which is consistent as long as the residuals are white noise and have

zero mean and finite variance. The idiosyncratic noise Qi is obtained by subtracting bi times the market

return to the stock return.
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Table 1 Selected stocks and summary statistics of excess returns.

Series Name m1 m2 m3 m4

m S&P 500 Index .0747 2.52 �2.31 55.49

1 ALCOA .0707 4.84 �0.26 13.39

2 AT&T .0392 4.33 �0.35 16.41

3 Black & Decker �.0168 5.61 �0.32 10.57

4 Campbell Soup .0897 4.37 0.28 9.06

5 Disney (WALT) .0981 4.86 �1.30 29.82

6 Entergy .0454 4.06 �0.97 23.66

7 General Dynamics .0764 4.53 0.26 10.24

8 Heinz HJ .0968 3.99 0.11 6.35

9 Johnson & Johnson .1053 4.08 �0.32 9.45

10 Merck .1212 3.96 �0.03 6.31

11 Pepsico .1170 4.43 �0.04 7.82

12 Ralston Purina .1077 4.08 0.70 15.41

13 Sears Roebuck .0542 4.91 �0.24 16.83

14 United Technologies .0851 4.19 �0.10 6.83

15 Xerox �.0423 5.48 �1.78 33.74

Observations cover January 1, 1980–March 6, 2001, giving 5,526 daily observations. The m1, m2, m3, and m4
denote the sample mean, standard error, skewness, and kurtosis of annualized excess returns, respectively.

The estimates are reported in terms of the excess returns above the risk-free interest rate (U.S. three-month

Treasury bill).

Table 2 Left-tail parameter estimates.

Series � A m

Rm 2.963 2.522 298

1 3.789 110.117 113

2 2.785 7.953 289

3 3.220 58.601 136

4 3.505 48.766 68

5 2.549 6.211 496

6 1.981 1.339 682

7 3.218 27.687 140

8 3.404 25.811 197

9 3.377 23.663 292

10 4.035 104.724 62

11 3.789 103.171 71

12 3.136 14.106 190

13 3.166 28.244 256

14 4.335 288.036 66

15 2.098 2.999 537

The values in columns a, A, and m are, respectively, the tail index, the scale parameter, and the

estimated optimal number of order statistics.
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In Table 3, computations proceed by using the pooling method, assuming

identical tail indexes for all risk components. We report the estimates of the scale

parameter A and the optimal number of order statistics m. Both are calculated for

the series of excess returns and for the (constructed) orthogonal residuals from the

market model (using the betas). The tail index estimate using all excess returns is

3.163, whilewhenwe use all the residuals the tail index is 3.246. The scale parameter

estimates, however, differ considerably as these range between 14.4 and 46.4 for the

excess returns, and are between 4.3 and 42.2 for market returns and residuals. We
note that the scale estimates for the excess returns using the pooling method are

more homogeneous than when using the individual series approach from Table 2.

The effects of portfolio diversification are reported in Table 4. The downside

risk measure is the probability of a loss in excess of the VaR level s; we report at

four different loss levels (s = 7.10, 11.69, 13.33, and 15.97).5 Four different levels of

portfolio aggregation are considered: 1 stock, 5 stocks, 10 stocks, and 15 stocks. The

numbers in row EMP are the probabilities from the empirical distribution function

Table 3 Left-tail parameter estimates.

Excess returns Residuals

Series A m b A m

T 23.0 1609 – 19.6 1021

Rm – – 1 4.3 15

1 26.2 122 0.877 24.7 86

2 19.5 91 0.929 15.2 53

3 46.4 216 0.938 42.2 147

4 22.7 106 0.719 19.5 68

5 24.0 112 1.012 22.1 77

6 14.4 67 0.475 14.9 52

7 25.3 118 0.710 25.0 87

8 16.3 76 0.640 14.9 52

9 13.9 65 0.927 10.6 37

10 15.7 73 0.854 11.5 40

11 24.2 113 0.867 18.7 65

12 15.0 70 0.669 16.4 57

13 29.0 135 1.074 17.5 61

14 20.2 94 0.895 13.2 46

15 32.4 151 0.949 26.7 93

The values in row T give estimates from the pooled series imposing scale homogeneity. The values in rows

Rm, 1, 2, . . . , 15 give estimates for the market returns and the individual stock series for the total excess

returns and the residual parts. The values in columns A and m are the scale parameter and the estimated

optimal number of order statistics imposing identical tail indexes. The values in column b are the market

model beta.

5 We chose this particular set of VaR values from the 5.0%, 1.0%, 0.5%, and 0.25% quantiles of the market

returns.
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of the total return series. The normal law is often used as the workhorse distribu-

tion model in finance, even though it does not capture the characteristic tail feature

of the data. Therefore, in the rows labeled NOR, we give the probabilities from the

normal model-based formula, using the mean and variance estimates from the

averaged series. The estimated values in rows FAT were obtained by the heavy-

tailed model using the averaged total excess returns
Pk

i¼1 Ri=k. The rows CDp give

the probability estimates from the pooled series on the basis of Equation (12),
assuming the heterogeneous scale model. One notes that the normal model does

well in the center, but performs poorly as one moves into the tail part. In contrast,

the averaged series in rows FAT is always quite close to the empirical distribution

function in the tail area. This shows that the heavy-tailed model is much better at

capturing the tail properties. If we turn to the last rows, one notes that the model in

Equation (12) does capture a considerable part of the tail risk of the portfolio, but

that there is a gap between the tail risk that is explained by the model and which is

left unexplained. This is further interpreted below.
To judge these results and to study the speed of diversification, a graphical

exposition is insightful. In Figures 1 and 2 we show the diversification speed of

the risk level by plotting the probability of loss for two different VaR levels

against the number of securities that are included in the portfolio.6 Figure 1 is

for the 7.10 VaR level and Figure 2 is for the 15.97 VaR level. The top line gives the

total amount of tail risk by means of the empirical distribution function. The gray

Table 4 Lower tail probabilities in percentages.

s �7.10 �11.69

k 1 5 10 15 1 5 10 15

EMP 4.995 1.195 0.633 0.579 0.995 0.253 0.145 0.145

NOR 7.325 0.934 0.225 0.198 0.817 0.005 0.000 0.000

FAT 6.551 1.181 0.741 0.706 0.988 0.265 0.185 0.171

CDp – 0.633 0.392 0.423 – 0.125 0.078 0.084

s �13.33 �15.97

k 1 5 10 15 1 5 10 15

EMP 0.489 0.163 0.109 0.127 0.235 0.109 0.090 0.090

NOR 0.309 0.000 0.000 0.000 0.051 0.000 0.000 0.000

FAT 0.603 0.179 0.129 0.118 0.304 0.104 0.078 0.071

CDp – 0.082 0.051 0.055 – 0.046 0.028 0.030

The entries in row EMP are the probabilities from the empirical distribution. The rows NOR row and FAT

report the probabilities calculated directly from the parameters of the averaged series itself, where in the

former case one uses the presumption of normality and in the latter case regular variation is imposed. The

numbers in rows CDp are the probabilities estimated using the pooled series. The k denotes the number

of individual stocks included in the averaged series, and s is the loss quantile. Probabilities are written

in Percentage format.

6 The order by which the securities are included corresponds to the numbering in Table 1.
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area constitutes the market risk component, while the black area contains the

idiosyncratic risk from Equation (12). Note that the idiosyncratic risk is basically

eliminated once the portfolio includes about seven stocks. To put this result into

perspective, we also provide a graph for the speed of diversification concerning

the variance (see Figure 3). This is a global risk measure, and under independence
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Figure 1 Downside risk decomposition at s ¼ �7.10 (fat-tailed case).
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Figure 2 Downside risk decomposition at s ¼ �15.97 (fat-tailed case).
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the variance of the idiosyncratic part should decline linearly in k. As can be seen

from this latter figure, it takes approximately twice the number of securities to

eliminate the variance part contributed by the idiosyncratic risk [cf. Elton and

Gruber (1995)]. Note that this corroborates the rate given in Equation (6) and the

value of � ’ 3 as in Table 2 (while the variance declines at speed 1). Interestingly,

as noted at the end of the previous paragraph, another remarkable difference

between the last figure and the first two figures is the size of the residual risk

driven by the factors other than the market factor. While this component is rela-
tively minor for the variance risk measure, it is even larger than the market risk

component for the downside risk measure. This points to the presence of another

factor, F, uncorrelated with R as in Equation (13). This other factor induces a small

correlation between the residuals (see Figure 3). This small correlation not with-

standing, the other factor appears important with respect to the downside risk. In

future research we hope to relate this factor to economic variables.

Next we compare the VaR diversification speed under the normal model with

the fat-tailed model. To plot the VaR diversification speed, we now look in the
VaR k space. From Equation (14) it is clear one cannot separate the market part

from the idiosyncratic part due to the power 1=�. Nevertheless, one can first plot

the VaR level doing as if only the market factor were relevant (e.g., this would be

the case if the idiosyncratic risks have a higher tail index compared to the market

index). The market factor is from Equation (14):

x ¼ ð 1
k

Xk
i¼1

biÞ Ar½ �1=��p�1=�: ð16Þ
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Figure 3 Variance decomposition.
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The next line plots the combined effect, market factor, and idiosyncratic compo-

nents, which simply is Equation (14). Third, one plots the empirical quantile

function as more assets are added. Similarly one can proceed in this fashion

under the assumption that the returns follow the normal distribution.
Figures 4–7 show the decreasing level of VaR for the given probability. Figure 4

is for the 0.05 probability level, and Figure 5 is for the 0.0025 probability level for

a fat-tailed distribution. The top line gives the total amount of VaR by means of

the empirical distribution function. The gray area constitutes the VaR level from

the market risk component, as in Equation (16), while the black area plus the

gray area displays Equation (14). Figure 6 is for the 0.05 probability level, and

Figure 7 is for the 0.0025 probability level for a normal distribution. These figures

clearly display the theoretical prediction of Equation (9), that the VaR diversifi-
cation speed for the idiosyncratic risk is lower for the normal model than for the

fat-tailed model.

5 OUT OF SAMPLE, OUT OF PORTFOLIO

The semiparametric approach we followed to construct the downside risk mea-

sure can also be used to go beyond the sample. We consider two possible

applications of this technique which might be of use to risk managers. The first

application asks the question how much extra diversification benefits could be

derived from adding more securities, without having observations on these

securities. By making an assumption regarding the value of the average beta

and the average scale of the residual risk factors in the enlarged portfolio, one
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Figure 4 VaR decomposition at p = 0.05 (fat-tailed case).
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can use Equation (12) to extrapolate to larger than sample size portfolios. A

second application is to increase the loss levels at which one wants to evaluate

the downside risk level beyond the worst case in the sample. Moreover, even at
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Figure 5 VaR decomposition at p = 0.0025 (fat-tailed case).
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Figure 6 VaR decomposition at p = 0.05 (normal case).
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the border of the sample, our approach has real benefits. By its very nature, the

empirical distribution is bounded by the worst case and hence has its limitations,

since the worst case is a bad estimator of the quantile at the 1/n probability level

(and vice versa). Thus increasing the loss level x in Equation (12) beyond the
worst case gives an idea about the risk of observing even higher losses.

In Table 5, the block denoted as Case I summarizes some information from

Table 4. The Case III block addresses the first application by increasing the

number of securities k beyond the sample value of 15. We assumed the following

average beta values: b ¼ 0:7, 0.83, and 0.9. The Case II block increases the loss

return level. In Table 4 we used 15.97 as the highest loss level. Above this level,

many securities have no observations. There is one equity with much higher loss

returns and we used this one to provide the ‘‘out of sample’’ loss levels of 22.03,
25.21, 33.69, and 40.45, respectively. To interpret Case III, note that the inclusion of

more stocks that have a close correlation with the market component increases the

loss probability for a given VaR level. For example, consider a portfolio of k ¼ 30

stocks, at the �15.97 quantile, when b ¼ 0:7 the probability is 0.0169, but when

b ¼ 0:9 the probability increases to 0.0381.

6 CONCLUSION

Risk managers use portfolios to diversify away the unpriced risk of individual

securities. In this article we study the benefits of portfolio diversification with

respect to extreme downside risk, or the VaR risk measure. The risk of a security

is decomposed into a part that is attributable to the market risk and an independent
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Figure 7 VaR decomposition at p = 0.0025 (normal case).
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risk factor. The independent part consists of an idiosyncratic part and a second

common factor. Two different measures for diversification effects are studied. The

VaR diversification speed measure holds the probability level constant and gives

the rate of change by which the VaR declines as more securities are added to the

portfolio, while the diversification speed of the risk level holds the VaR level
constant and measures the decline in the probability level. For the VaR diversifica-

tion speed measure, we argued fat-tailed distributed idiosyncratic risk factors

should go down at a higher speed than normal distributed idiosyncratic risk

factors. This theoretical prediction was also found empirically to be the case.

Furthermore, we provide predictions for the downside risk diversification benefits

beyond the range of the empirical distribution function.

This research can be extended in several directions. Given the large gaps in

Figures 1 and 3 between the total downside risk and the market factor downside

Table 5 Lower tail probabilities: Beyond the sample and market.

s �7.10 �11.69 �13.33 �15.97 �22.03 �25.21 �33.69 �40.45

% 5.0 1.0 0.5 0.25 0.090 0.054 0.018 0.009

k CASE I CASE II

EMP 1.1946 .2534 .1629 .1086 .0362 .0362 .0181 .0181

5 FAT 1.1900 .2660 .1798 .1045 .0397 .0265 .0111 .0064

CDp .6093 .1205 .0789 .0439 .0154 .0100 .0039 .0021

EMP .6335 .1448 .1086 .0905 .0181 .0181 .0181 .0181

10 FAT .6800 .1490 .1001 .0578 .0217 .0144 .0060 .0034

CDp .3914 .0774 .0507 .0282 .0099 .0064 .0025 .0014

EMP .5792 .1448 .1267 .0905 .0181 .0181 .0181 .0181

15 FAT .7087 .1722 .1189 .0712 .0286 .0195 .0086 .0051

CDp .4227 .0836 .0547 .0304 .0107 .0069 .0027 .0015

CASE III

CDp1 .2375 .0470 .0307 .0171

20 CDp2 .4190 .0829 .0543 .0302

CDp3 .5318 .1052 .0689 .0383

CDp1 .2359 .0467 .0305 .0170

25 CDp2 .4175 .0826 .0541 .0301

CDp3 .5302 .1049 .0687 .0382

CDp1 .2350 .0465 .0304 .0169

30 CDp2 .4166 .0824 .0540 .0300

CDp3 .5294 .1047 .0686 .0381

The entries in rows EMP are the probabilities from the empirical distribution. The numbers in rows FAT

are the probabilities calculated directly from the parameters of the average series itself. The numbers in

row CDp are the probabilities from the fat-tail market model of Equation (12). The numbers in rows CDp1,

2, and 3 are calculated by imposing b = 0.7, 0.8358, and 0.9, respectively. The k denotes the number of

individual stocks included in the averaged series, and s gives the loss quantile. Probabilities are written in

percentage format.
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risk contribution, it is of interest to see whether one can identify the remaining

risk factors F, as in Equation (13). Moreover, one would like to explain why these

remaining risk factors are relatively unimportant for the global risk measure such

as the variance. Moreover, the above analysis may explain why many investors
seem to hold not-so-well-diversified portfolios if a global risk measure like the

variance is used as the yardstick.

Received March 1, 2004; revised October 8, 2004; accepted October 19, 2004.
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