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ON THE FREQUENCY OF LARGE STOCK RETURNS:
PUTTING BOOMS AND BUSTS INTO PERSPECTIVE

Dennis W. Jansen and Casper G. de Vries*

Abstract—Numerous articles have investigated the distribu-
tion of share prices, and find that the returns are fat tailed.
Nevertheless, there is still controversy about the amount of
probability mass in the tails, and hence about the most appro-
priate distribution to use in modeling returns. This contro-
versy has proven hard to resolve, as the alternatives are
non-nested. We employ extreme value theory, focusing exclu-
sively on the larger observations in order to assess the tail
shape within a unified framework. We find that at least the
first two moments exist. This enables one to generate robust
probabilities on large returns, which put the recent stock
market swings into historical perspective.

I. Introduction

HE October 1987 stock market plunge and

its aftermath have led to numerous investiga-
tions. In contradistinction with the first reviews,
currently most researchers regard the drop as a
sizeable but not unlikely market correction for
which no particular abnormal circumstances are
to blame. Roll (1988), for example, finds no evi-
dence that institutional factors were a major con-
tributor, but describes the plunge as a normal
response to an aggregate world market shock.
The aim of this paper is to judge the events
against the frequency with which extreme price
changes are expected to occur. One way to ap-
proach this question is to employ one of the
distributions that have been advanced in the liter-
ature for modeling stock price returns.! While
these models in one way or another capture the
higher than normal kurtosis, there is considerable
controversy over the exact amount of probability
mass in the tails of the distribution, e.g., whether
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! Among the better known models are Mandelbrot’s (1963)
stable hypothesis; the Student-¢ distribution considered by
Praetz (1972), and Blattberg and Gonedes (1974); the discrete
mixture of normals studied in Kon (1984); the mixed diffusion
jump process advanced by Press (1967); the ARCH process
introduced by Engle (1982); and the recent power exponential
or GED proposed by Baillie and McMahon (1989).
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or not the second moment is finite. This contro-
versy is not immaterial to our problem, as the tail
shape of the distribution is essential for determin-
ing the frequency of large returns. Unfortunately,
a comparison between the competing hypotheses
is hampered by the fact that some of the models
are non-nested and exhibit infinite variance.
Therefore, conventional model selection tests do
not apply.?

In this paper we propose to address the issues
in a novel way by explicitly focusing on the tails of
the distribution through the limit laws for the
distribution of maxima (minima). These limit laws
nest the alternative probability models by the
so-called tail index a. For example, the stable
hypothesis has o < 2, while the Student-t model
allows for a > 2. This statistic « can be esti-
mated, its estimator is asymptotically normally
distributed, and, hence, tests of hypotheses are
possible. In analogy with the reliance on the
central limit law for inferences about the mean,
this approach has the advantage that it does not
depend on a particular probability model as the
maintained hypothesis.> A disadvantage is that «
is not a sufficient statistic for the entire return
distribution, but it is a sufficient statistic for the
tail shape of the distribution of extreme returns.
Given an estimate for a, one can establish the
sizes of the extremely low or high returns that
would be rarely exceeded.* This allows for ex-
trapolation of the empirical distribution function,
and thereby the events of October 1987 can be
put into perspective.

II. Theory

Consider a stationary sequence X, X,,... of
independent and identically distributed (i.i.d.)

2 The likelihood ratio criterion employed by Blattberg and
Gonedes (1974), and Kon (1984), for example, is uninforma-
tive as its distribution is unknown.

3 Related work is by Akgiray and Booth (1988) who employ
a maximum likelihood procedure. We use the more efficient
nonparametric estimator.

McCulloch (1981) calculates bankruptcy probabilities
maintaining a specific distribution model.

Copyright © 1991
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random variables with a distribution function F
(d.f. F). Suppose one is interested in the proba-
bility that the maximum

M, = max( X, X,,..., X)) (1)

of the first n variables is below a certain level x.
As is well known, this probability is given by

P{M, <x} =F"(x). (2)

Extreme value theory studies the limiting distri-
bution of the order statistic M, (appropriately
scaled). That is, one is interested under what
conditions there exist suitable normalizing con-
stants a, > 0, b,, such that

Pa,(M, = b,) <x} > G(x),

ie.,

(3

F"(x/a, +b,) > G(x),

where G(x) is one of the three asymptotic distri-
butions that are defined below, and w stands for
weak convergence. If (3) holds, we shall say that
F belongs to the domain of attraction of G, and
write F € D(G). The main result is the Extremal
Types Theorem:

THEOREM 1: The possible limiting d.f. G are
Type I: G(x) = exp(—e™*) — o <x <

Type II: G(x) =0 x <0,
=exp(—x"%), x> 0; 4

Type III: G(x) = exp(—(—x)") x <0, )
=1 x>0

with the index a > 0.

The index « is called the tail index, and for
convenience we sometimes use its inverse y =
1/a. Mood et al. (1974, p. 261) provide an intro-
ductory account to this result.’

The advantage of using the limiting d.f. G(x) is
that no detailed knowledge of F(x) is needed. A
complication is the fact that there are three limit
laws, and which one is applicable depends on the
tail shape of F(x). The qualitative characteristics
of the economic process may, however, point to

5 Leadbetter et al. (1983) give a comprehensive treatment
and also treat the case of dependency, when the scaling
parameter a, has to be modified by a constant multiplicative
factor 6, 0 < § < 1. Most of the results below carry over to
dependent variates, and therefore we do not treat this case
explicitly.

the relevant limit law. Consider the following two
necessary conditions from De Haan (1976):
Condition 1: If Fe€ D (Type 1 G(x)) and
F(x) <1 for all x, then
[7tP dF(z) is finite for all B.
Condition 2: If F € D (Type 11 G(x)), then
F(x) < 1for all x and [{t? dF(z)
is finite for B < « and infinite for
B> a.

The intuition behind these conditions is as
follows. Loosely speaking, the tail of the distribu-
tion is either declining exponentially or by a
power. In the first case all moments exist, but in
the second case the higher moments do not decay
rapidly enough when “weighed” by the tail prob-
abilities to be integrable, i.e., the d.f. F(x) has fat
tails. This explains the appearance of the double
exponential in the Type I limit law and the expo-
nential format of the Type II law as well. The
third limit law is characterized by the fact that it
has a finite upper endpoint. Given that stock
returns are strongly fat tailed, and unbounded in
principle, the Type II limit law is the only rele-
vant type.

A sufficient condition on F(x) for the Type II
limit to obtain is

Condition 3: 1t is sufficient for F € D (Type II

G(x)) that it has no finite upper
endpoint, and for each x > 0 and

some a > 0

. 1-F(x)

Im —=x"¢
t—w 1 —F(t)

The latter condition boils down to regular vari-
ation at infinity, see Feller (1971, ch. VIIL8). A
very useful implication of regular variation is the
following result from Feller (ch. VIIL.8):

THeoreM 2:  If 1 — F(x) varies regularly at in-
finity, i.e., satisfies Condition 3, then the M, from
F(x) or any finite convolution of F(x) follow the
same limit law.

The following discussion shows how the above
conditions and theorem may be employed in spe-
cific cases. Return to the d.f’s F(x) that have
received most of the attention in the literature on
stock returns. First, variates from the normal,
discrete mixtures of the normal, the mixed diffu-
sion jump processes (with finite jump parameter)
and the power exponential distribution possess all
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moments, and in fact Condition 1 applies.® Given
such a lack of probability mass in the tails, these
alternatives seem unfit for modelling stock re-
turns. Second, variates from the Student-tz, the
stable d.f. and the ARCH process satisfy Condi-
tion 2, i.e., not all moments are finite. To verify
that the Student-t class satisfies Condition 3 is
straightforward. See, for example, Mood et al.
(1974, p. 262) for a proof. Note that the degrees
of freedom v are equal to the tail index « in (4).
The proof that the stable distribution satisfies
Condition 3 takes a little bit more effort, but
follows, e.g., from manipulation of the asymptotic
expansions given in Feller (1971). In De Haan
et al. (1989) it is shown, by using appropriate
mixing conditions, that the ARCH process is also
in the domain of attraction of the Type II limit
law. Because the class of the stable distributions
is closed under addition, Theorem 2 above holds
trivially for the stable distributions. Fortunately,
even though, e.g., Student-¢ distributions are not
invariant under addition, their tail behavior is
unaffected by aggregation. That is, M, generated
from a Student-t or any finite sum of Student-¢
variates all tend to follow the Type II limit law,
with the same a! This provides a certain robust-
ness to the empirical applications below, as one
can rely on the highest frequency data available
for estimating the tail index.

From this discussion it is immediate that the
relevant F(x)’s are nested within the Type II
limit law, and are distinguished by different val-
ues for a. Specifically, the leptokurtic stable hy-
pothesis requires @ < 2 while the Student-¢ class
and ARCH process have a > 2. The idea is now
to estimate « directly without a prior commit-
ment to either hypothesis.

The estimation procedures for « fall into two
categories. If the Type II limit law applies, direct
estimation by maximum likelihood is consistent,
but it is not the most efficient procedure, i.e., the
Cramér-Rao bound does not apply because the
limit law is not followed exactly in finite samples,
see Smith (1987). Recently, more efficient estima-
tors have been proposed based on the largest
order statistics, which require only that the distri-
bution generating these observations is well be-

6 By Theorem 1.6.1. in Leadbetter et al. (1983) it follows
that all four processes belong to the domain of attraction of
the Type I G(x) and hence the inverse of the tail index vy is
zero.

haved. This implies that the remaining estimation
error can be solely attributed to the use of finite
samples. For example, regular variation at infinity
is often a sufficient condition. The focus here is
on these methods.

Let X, X,,..., be a sequence of stationary
i.i.d. observations from some distribution function
Fe D (Type II G(x)). We are interested in
obtaining an estimate for vy, given that the Type
IT limit applies. Define X, < X, < -+ <X,
as the ascending order statistics from a sample
X, X,,..., X, of n consecutive stock returns X,.
The proposed estimator reads

1 m

y=1/4= m X [log Xns1-i — log X(n—m)]‘
i=1

(5)

The statistic 9 first appears in Hill (1975). Mason
(1982) proves that if Condition 3 is satisfied, 7 is
a consistent estimator for y. Consistency obtains
as well for a nonindependent sequence of X’s, if
the dependency is not too strong. By a result in
Goldie and Smith (1987), it follows that (§ —
y)m!/? is asymptotically normal with mean zero
and variance y2.

The estimation procedure requires m(n) — oo,
but for a finite sample it is not known how to
choose m optimally. In the empirical section we
conduct a Monte Carlo study to select m. Due to
the asymptotic normality of ¥, the MSE criterion
may be used for selecting an optimal m for given
sample size n and d.f. F(x).

The implied asymptotic confidence interval al-
lows one to test directly for competing hypotheses
about F(x), e.g., the stable and Student-¢ distri-
butions. The former requires 0 < @ < 2 and the
latter allows for @ > 2. As noted, discrimination
between the two hypotheses is hampered by their
non-nestedness. However, as our estimate of « is
not conditional upon one of the two hypotheses
being true, the asymptotic confidence interval may
be used to test for Hy: o < 2 against H;: o > 2.
The asymptotic normality of 1/& may also be
exploited to compare a estimates from different
samples. The following statistic Q:

a 2 a, 2

Q=(—;——1) m1+(7—1) ms,

a; a,

(6)

where the a and m are as in equation (5) and the
subindexes refer to two independent samples, is



PUTTING BOOMS AND BUSTS INTO PERSPECTIVE 21

asymptotically y2(2) distributed. It can be used to
test for stability over different subsamples.

Given an estimate for the tail index «, one can
establish extreme return levels that are only rarely
exceeded. This is achieved by extrapolating the
empirical distribution function outside the sam-
ple domain. The following procedure only re-
quires regular variation, and uses order statistics
to estimate the excess levels X, for which

P{X, <%,,....,X, <%} =F%%,)=1-p,

for small p and given k. The following is a
consistent estimator of the excess levels:

(kr/pn)" —1
T T 23 (Xtn-ry = Xin-2r)
+ X(n—r)’ (7)

where n is the number of observations, k is the
time period considered, r = m/2, and p is the
probability of excess. The proof of consistency of
%, is given in Dekkers and De Haan (1989).

A heuristic interpretation of the estimator in
equation (7) is as follows. The pattern of the
empirical d.f. F,(x) as signified by the level X, _,,
and step size (X,_,) — X, _,,)) is extrapolated
outside its domain by using the way the limit law
extends. The latter is represented through the
multiplication factor in front of the stepsize. For
p > 1/n the empirical d.f. is a good estimator for
X,, due to its unbiased mean squared error con-
sistency; see Mood et al. (1974, p. 507). But for
p < 1/n, F(x) is of no avail, and the above is a
device to extend F,(x) beyond 1/n.

III. Empirical Analysis

In this section we evaluate the leptokurtosis in
stock returns and tabulate probabilities on ob-
serving excessively high and low returns. The data
consist of 6000 daily dividend compensated stock
returns for ten stocks from the S & P 100 list, and
two market indices over the period 1962 to 1986.7
There is little disagreement about the qualitative

7 Data were obtained from the CRSP Tape compiled by the
Graduate School of Business of the University of Chicago.
The stocks used are listed with the following ticker symbol:
(1) IBM, (2) MOB, (3) MBK, (4) KM, (5) AMP, (6) HON,
(7) NCR, (8) GW, (9) OI, and (10) BC. Furthermore two
market indexes were used: the S & P 500 and the Unweighted
Market Index, abbreviated to UMI. Returns were computed
as log differences. Further details about the data and pro-
grams are available from the first author upon request.

TaBLE 1.—MSE, Bias SOUARED AND m-LEVELS

m a=1/2 a=1 a=2 a=3

1680 0.0028 0.0491 0.1443 0.2079

(a=1/2) [0.21] [0.99] [1.00] [1.00]

(0.0024)
470 0.0081 0.0020 0.0048 0.0138
(a=1) [0.00] [0.17) [0.88] [0.98]
(0.0021)
170 0.0206 0.0054 0.0014 0.0031
(a=2) [0.00] [0.01] [0.29] [0.68]
(0.0015)

100 0.0349 0.0092 0.0019 0.0023

(a=3) [0.01] [0.00] [0.015] [0.44]
(0.0011)

Note: The left-hand column reports the m-levels conditional on the «
value between the brackets for which the MSE is minimal. The MSEs for
different (m, a) pairs are reported in the matrix, together with the bias
squared as a percentage of the MSE between [.] brackets. The theoretical
MSEs are reported between (.) brackets. The simulations consisted of 100
replications of 6000 draws. The a was estimated for m = 10,...,2000 with
stepsize 10.

properties of stock returns. Typically, daily re-
turns are a stationary series that is strongly lep-
tokurtic and possibly exhibits some low order
serial dependence. Thus, the data meet the crite-
ria for application of the theorems and estimators
of the previous section.

As noted, the problem with any tail index esti-
mator like ¥ in equation (5) is that it is condi-
tional upon the portion m/n of the sample used
for calculating the statistic y. It is not known how
to choose m in finite samples, so we conducted a
Monte Carlo experiment to find the m-level, con-
ditional upon a sample size n and d.f. F(x), for
which the MSE is minimal. We simulated with
four different distributions: the Student-f distri-
bution with 1, 2 and 3 degrees of freedom, and
the inverted chi square distribution (see table 1).
The first and last distribution are sum stable with
characteristic exponents 1 and 1/2, respectively,
and have more mass in the tails than the other
distributions.

Clearly, the optimal m-levels vary inversely with
the true tail index «. The reason is that the lower
is «a, the fatter the tails of the distribution, and
hence the more “outliers” are available to esti-
mate the tail index. Note that there is an asym-
metry in table 1. For high m, increasing « deteri-
orates the MSEs more than lowering « for low
m. This suggests that using too many observations
such that some do not belong to the tail, but
rather to the center of the distribution, is more
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harmful than not using all the available informa-
tion. The bias part of the MSE, due to inclusion
of the center characteristics, is thus seen to domi-
nate the variance part, which stems from ineffi-
cient use of the available information.

On the basis of these results we decided to be
conservative in choosing the number of observa-
tions for the actual estimation. The estimates for
the tail index in table 2 are conditioned on m =
100. All estimates are between 3 and 5 and are
significantly above 2 according to the 95% asymp-
totic confidence intervals.® We resolve the long-
standing issue about the appropriateness of the

8 The estimates for the indices correspond to those of the
individual stocks, as was anticipated on the basis of Theo-
rem 2.
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Student-t or ARCH class vis a-vis the stable class
in favor of the former. The hypothesis that the
returns follow a discrete mixture of normal distri-
butions, a mixed diffusion jump process or the
power exponential distribution is not tenable as
the tail index is too small (significantly below 30,
say). We conclude that stock returns are fat-tailed
in comparison with the normal distribution, but
still possess a finite variance. Thus the central
limit theorem for addenda is applicable, but at
the same time Theorem 2 above also applies.
One might argue that our estimates for the tail
index are not robust, citing institutional changes
on financial markets, c.f. Akgiray and Booth (1988,
p. 52). In order to investigate this issue we split
the sample into two parts, using April 26, 1973 as
the dividing day. On this day the Chicago Board

TaBLE 2.—TAIL INDEX ESTIMATES

Stock Upper Tail @ Maximum Lower Tail & Minimum
1 3.72 0.10 4.65 -0.09
(2.99-4.45) (3.74-5.54)
2 3.64 0.11 3.68 -0.09
(2.93-4.35) (2.96-4.40)
3 4.36 0.09 522 —-0.10
(351-5.21) (4.20-6.24)
4 3.76 0.12 3.60 -0.20
(3.02-4.50) (2.89-4.31)
5 4.28 0.11 4.41 -0.15
(3.44-5.12) (3.54-5.28)
6 334 0.13 3.53 —0.16
(2.69-3.99) (2.84-4.22)
7 445 0.12 453 —-0.13
(3.58-5.32) (3.64-5.42)
8 4.62 0.21 4.11 —0.11
(3.71-5.53) (3.31-4.91)
9 3.79 0.15 4.17 —-0.10
(3.05-4.53) (3.35-4.82)
10 4.56 0.26 371 -0.19
(3.66-5.46) (2.98-4.43)
Index
UMI 3.27 0.07 3.37 -0.05
(2.63-3.91) (2.71-4.03)
S&P 3.96 0.05 4.30 —0.05
(3.18-4.74) (3.46-5.14)

Note: Reported are the « estimates and their 95% confidence intervals for both the upper and lower tail; the
maximum and minimum sample returns are given as well. The estimates were based on the estimator in (5) with

m = 100, c.f. table 1.

TABLE 3.—STaABILITY OF THE LOWER TAIL INDEX

Stock 1 2 3 4 5 6 7 8 9 10 UMI S&P
Pre 73a 322 352 337 318 321 331 328 362 310 3.06 373 371
Post 73a¢ 3.82 279 4.06 319 321 3.03 375 336 339 325 290 3.65
Upper 2.84 257 3.00 255 257 254 283 280 260 253 271 295
Lower 410 358 430 382 385 377 414 416 386 377 372 4.14

Note: The subsample « estimates are conditioned upon m = 75. This number is also used in computing the
Q-test in formula (6), i.e., m; = m, = 75. The lower two rows give the lower and upper bounds of the interval for
which Hy = a; = a; is not rejected on the basis of the Q-test.
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TaBLE 4.—LoWER TAIL PROBABILITIES ON DAILY RETURNS

Probabilities
Returns Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6
—0.10 0.01952 0.14225 0.01092 0.16479 0.10972 0.25174
—0.20 0.00086 0.01299 0.00030 0.01469 0.00557 0.02475
—-0.30 0.00013 0.00308 0.00003 0.00350 0.00095 0.00618
Stock 7 Stock 8 Stock 9 Stock 10 UMI S&P
-0.10 0.12805 0.10826 0.07519 0.51892 0.02165 0.00361
—0.20 0.00597 0.00553 0.00458 0.04555 0.00222 0.00019
-0.30 0.00097 0.00100 0.00087 0.01061 0.00057 0.00003

Note: The table is constructed by using formula (7), with k = 260, i.e., approximately covering one year, r = 50,

n = 6000, and the o’s are from table 2.

Option Exchange was organized. Moreover, it
was the year of the final demise of the Bretton
Woods agreement and the aggregate oil price
shock. Table 3 reports the stability of the lower
tail «’s by means of the Q-test in equation (6).
The stability of « is never rejected at the 5%
significance level, as all the subsample estimates
are within the bounds and thus the tails appear
robust across different economic regimes. Similar
results were obtained for the upper tail a’s.
While knowledge of the value of the tail index
is interesting in itself, the question of economic
interest is how likely extreme returns are. To
answer this question the « estimates from table 2
are used in formula (7). Table 4 gives negative
return levels below which daily yields within the
time span of one year would only move with the
specified (low) probability. For example, the
probability that within a given year stock 6 experi-
ences a one day drop in its share price of more
than 20% is 0.02475. Stated differently, on aver-
age, about once every 1/.025 = 40 years, the
share price of stock 6 will fall by more than 20%.
From table 2 we know that the largest daily drop
observed within the sample of 24 years was 16%.
Hence, table 4 uses our knowledge about the tails
of the distribution to extend our knowledge of
stock returns over longer time spans and lower
probabilities than empirically observed. By com-
paring the probabilities for different stocks, the
table provides an alternative indicator for the
amount of tail thickness. In this respect it can be
used as a device for portfolio selection. Suppose
an investor is interested in selecting the stock
which minimizes the probability of extreme losses
(i.e., the minimax strategy). Fixing the extreme
losses at 30% or lower, the investor should select

stock 3. Note that this stock also has the highest
tail index estimate, i.e., & = 5.22.

The table also gives some perspective to the
events of October 1987. On October the 19th
many stocks and the market indices fell by more
than 20%. From table 4 we see this is not an
unlikely event for most of the individual stocks,
and this is corroborated by the minima reported
in table 2. What made this into a rare event was
that all stocks dropped simultaneously by such a
large amount, causing the sudden and severe
drop in the market indices. According to table 4,
however, this latter event carries a probability of
no more than 0.0022, suggesting that crashes like
the one of October 19 occur only once in about
every 450 years. On the one hand, this probability
vis & vis those recorded for the individual stocks
evidences the effects of portfolio diversification
whereby stock-specific shocks are mitigated. On
the other hand, this probability is on the low side
given that since 1899 there have been four days
on which the Dow Jones industrial average (Dow)
dropped by more than 10%. The relatively short
sample we employed did not include these events
and therefore may cause some underestimation.

Although the aggregate shocks covered by our
sample period, like the oil shock of 1973, did not
lead to excessive daily plunges, they did lead to
sustained declines. To see whether extremal anal-
ysis does predict these sustained declines in the
market indices, one could use returns over longer
time spans than a day. Table 5 provides probabili-
ties on observing monthly yields in excess of a
return over the time span of one year. Note that
the table is generated by using the daily &’s,
which is permissible in view of Theorem 2. From
table 5 we see that the probability that on aver-
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TABLE 5.—PROBABILITIES ON MONTHLY RETURNS FOR THE UMI

Returns
0.10 0.14 0.18 0.20 0.25 0.30 0.50 1.00 2.00
Probabilities in Upper Tail
0.7740 0.3493 0.1842 0.1395 0.0760 0.0456 0.0102 0.0012 0.0001
Probabilities in Lower Tail
0.5653 0.3209 0.1977 0.1589 0.0972 0.0633 0.0170 0.0023 0.0003

Note: The table was constructed by forming monthly yields from the daily yields through addition and then
applying formula (7) with & = 12, i.e., covering a year, r = 30, n = 294 and the «’s from table 2.

age within any year a monthly market drop ex-
ceeds 20% or 30% is 0.16 or 0.06, respectively,
i.e., occurs once in about every 6 or 15 years,
respectively. Hence, the probability of a sustained
bearish market is quite high. It shows that while
the events of October the 19th may be excep-
tional, a drop of similar proportions over a some-
what longer period is not unlikely.

IV. Conclusion

In this paper we investigate the tail behavior of
stock returns, instead of looking at the entire
distribution. Thereby one trades off knowledge
about the center characteristics of the d.f. against
the ability to nest d.f.’s with different probability
mass in the tails by means of the limit laws for
maxima. Empirical estimates of this encompass-
ing model point towards the existence of a finite
mean and variance but infinite higher moments,
lending support to the Student-t and ARCH class
distributions vis a vis the stable class and the
mixtures of normal distributions.

The tail estimates were in turn used to gener-
ate probabilities and the associated extreme re-
turns. Such tables are useful to investors who
want to select a conservative portfolio. The tables
also indicate the difference between investing in a
specific stock or in a market portfolio. Not sur-
prisingly, the risk on an extremely large or small
yield is much higher for the former strategy than
the latter.
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