ASSET MARKET LINKAGES IN CRISIS PERIODS

P. Hartmann, S. Straetmans, and C. G. de Vries*

Abstract—We characterize asset return linkages during periods of stress
by an extremal dependence measure, Contrary to correlation analysis, this
nonparametric measure is not predisposed toward the normal distribution
and can allow for nonlinear relationships. Our estimates for the G-5
countries suggest that simultaneous crashes between stock markets are
much more likely than between bond markets. However, for the assess-
ment of financial system stability the widely disregarded cross-asset
perspective is particularly important. For example, our data show that
stock-bond contagion is approximately as frequent as flight to quality from
stocks into bonds. Extreme cross-border linkages are surprisingly similar
to national linkages, illustrating a potential downside to international
financial integration.

1. Introduction

O different financial markets crash jointly, or is a fall

of one a gain for another? The answer to this question
is crucial for our view on the stability of international
financial markets and any systemic risk related to these
markets. The more markets crash simultaneously, the more
in danger are even large banks that hold widely diversified
trading portfolios, possibly also threatening the payment
and settlement process. The number of markets affected by
a crisis situation may also determine the severity of any real
effects that might follow. Recent financial crises in emerg-
ing market economies have again drawn attention to these
issues. Market participants, policymakers, and academics
frequently point to the perceived occurrence of contagion,
witness terminology like the “Asian flu.” Others highlight
joint shocks and macroeconomic fluctuations, triggering
simultaneous crises in several markets or countries.

The phenomenon of financial-market crises spilling over
to other countries was first systematically studied by Mor-
genstern (1959, ch. X).! He examined the effects of 23 stock
market panics on foreign markets and explicitly referred to
the “statistical extremes” of the stock market movements.
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The more recent econometric literature uses correlation
analysis, often based on ARCH-type models. This literature
asks whether stock-market comovements become stronger
during crashes than in noncrash times. It also investigates
the direction of international spillovers. Representative ar-
ticles of this literature are King and Wadwhani (1990),
Hamao, Masulis, and Ng (1990), Malliaris and Urrutia
(1992), Lin, Engle, and Ito (1994), and Susmel and Engle
(1994). There is also some empirical work on whether
currency crises are contagious, notably in Eichengreen,
Rose, and Wyplosz (1996), Sachs, Tornell, and Velasco
(1996), and Kaminsky and Reinhart (2000). However, there
is very little work on bond market spillovers.’?

The present paper adds a new perspective to the linkages
between asset markets, by studying comovements between
different types of assets and by using a novel methodology.
In contrast to the existing literature, we do not only study
the connection between, say, different stock markets during
times of stress; we explicitly focus on the linkages between
stock and government bond markets. Thus, apart from
studying phenomena like contagion or joint crashes of
stocks, we look into phenomena such as flight to quality, by
which we mean a crash in stock markets accompanied by a
boom in government bond markets. Extreme cross-asset
linkages are important for the analysis of international
financial stability, for they have a bearing on the overall, or
systemic, reach that contagion or joint crashes can have. We
are not aware of any other hard quantitative examination of
cross-asset crisis linkages, including the flight-to-quality
phenomenon.

The methodological novelty is that we do not use condi-
tional correlation analysis. We directly measure and report
the expected number of market crashes conditional on the
event that at least one market crashes. Studies which rely on
conditional correlation analysis usually do report the
amount of correlation, but stop short of reporting the infor-
mation that has more direct economic meaning. In our
opinion, the correlation measure is only an intermediate step
in obtaining a measure such as the likelihood of a crash
spillover. The conditional correlation, moreover, is strongly
predisposed toward the multivariate normal distribution. As
our empirical analysis below shows, however, the multivar-
iate normal dramatically underestimates the frequency of
extreme market spillovers. Boyer, Gibson, and Loretan

2 We know of only two studies that systematically address international
bond-market spillovers in volatile periods, namely Borio and McCauley
(1996) and Domanski and Kremer (2000). In contrast with recent ad-
vances in the theoretical analysis of (for example) bank contagion, there
are surprisingly few theoretical attempts to explicitly model crisis linkages
between different securities markets. The published literature comprises
King and Wadhwani (1990), Calvo and Mendoza (2000), Kodres and
Pritsker (2002), and Kyle and Xiong (2001). For a comprehensive survey
of the contagion literature, see de Bandt and Hartmann (2000).
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(1997) demonstrate for the bivariate normal that the condi-
tional correlation measure varies considerably with the
conditioning sets.’ In addition, this variation can easily be
shown to be different for different classes of multivariate
distributions; worse, the conditional crash correlation can be
0 even if there is a high spillover probability. For all these
reasons, we do not regard the statistical concept of correla-
tion as an unambiguous measure of the economic interde-
pendence between markets during times of stress.

This paper instead characterizes the return linkages be-
tween asset markets in periods of crisis by a measure from
statistical extreme-value analysis that captures the depen-
dence structure of multivariate distributions far away from
the center. It turns out that this limiting dependence measure
can be described by a single function that exists under fairly
general conditions. In contrast to correlation-based ap-
proaches toward measuring market linkages, the probability
law of the joint return process can be left unspecified,
because we use a nonparametric estimator for the limiting
dependence function. From these nonparametric estimates
of the limiting dependence function we derive estimates for
the expected number of market crashes (or the probability of
a simultaneous crash) given that at least one market crashes.
Thus market linkages in crisis periods are measured directly
in the economically relevant money metric and associated
probabilities, and we do not make the detour via correla-
tions.

The methodology is then used to analyze the linkages
within and between equity and bond markets in the G-5
industrial countries in times of market turmoil.* Our results
indicate small but nonnegligible cross-asset market linkages
in times of stress. The strongest extreme linkages are be-
tween different national equity markets, and the flight-to-
quality phenomenon is approximately as frequent as simul-
taneous crashes of stock and bond markets. Whereas single
bond or stock market crashes are relatively rare events
happening once or twice a human lifetime, the conditional
probabilities of having a crash (or boom) in a market given
that one occurred in another market are quite high. Inter-
estingly, cross-border linkages are not weaker than domestic
linkages. Whereas these results confirm that in the era of
free capital flows and globalization, surveillance of financial
market stability cannot stop at national borders, they also
suggest that there are some limits to how widely contagion
can spread.

3 Forbes and Rigobon (2002) show a similar conditional correlation bias
in the context of the linear regression model and propose a correction
for it.

* Related analyses for a single type of contract have recently been
carried out on foreign exchange data by Straetmans (1998) and Starica
(1999), and on major stock markets by Straetmans (2000), Longin and
Solnik (2001) and Poon, Rockinger, and Tawn (2001). For analyses of
stock market comovements using regime-switching volatility models, see
Ramchand and Susmel (1998). For studies of regular noncrisis cross-asset
interdependence, see, for example, Longin and Solnik (1995), Fleming,
Kirby, and Ostdiek (1998), or Bodart and Reding (1999).
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The paper is organized as follows. The next section
introduces our nonparametric asymptotic tail dependence
measure for extreme financial market comovements. Sec-
tion III presents the way in which this extreme linkage
measure can be estimated in two steps, a univariate one and
a bivariate one. Some related testing techniques are dis-
cussed in section IV. Section V contains the results from
applying this approach to weekly G-5 country stock and
bond market returns. The empirical analysis follows the two
steps described in section III, first comparing extreme re-
turns in stock and bond markets and then detailing national
cross-asset linkages, cross-border linkages within the same
asset class, and finally cross-border cross-asset linkages.
Conclusions are drawn in section VI. Four appendices
provide details about the derivation of a test statistic for
extreme dependence, the small-sample properties of the
tests used in the main body of the paper, the small-sample
properties of our extreme linkage measure, and the data
employed.

II. Extreme Linkages: Probability Theory

Suppose one is interested in measuring the expected
number of market crashes given that at least one market
crashes (or booms, as in the flight-to-quality case). This
measure reflects how many markets are on average drawn
down when one market crashes. Consider the case of two
markets with random returns X and Y. Let x and y be the
quantiles (or rhresholds) above which we speak of a market
boom or crash (in case of a loss). To study market crashes
we adopt the convention of taking the negative of a return,
so that we can study all extreme events in the first quadrant.
Let k stand for the number of markets with extreme returns.
Our extreme linkage indicator is the conditional expectation
E[k|k = 1]. From elementary probability theory (starting
from the standard definition of conditional probability) we
have that

PIX>x, Y=y} +PX =x, Y >y}
+ 2P{X > x, Y > y}
P{X>xorY>y}
P{X > x} + P{Y > y}
= Elxlx = l]_'P{x>_ror}'>_v} :

(1)

withP{X >xorY >y} =1— P{X =x, Y= y}. Notice
also that E[k|k = 1] = P{k = 2|k = 1} + 1, so that an
alternative interpretation of our extreme linkage indicator is
in terms of (1 plus) the conditional probability that both
markets crash given that at least one market crashes. For
higher dimensions than two E[k|k = 1] is still equal to the
ratio of the sum of the marginal excess probabilities divided
by the joint failure probability. The measure P{k = 2|k =
1} is however not as easily extended to higher dimensions.

The question is how E[k|k = 1] can be calculated in
practice. Within the framework of the multivariate normal
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distribution this would be a trivial exercise, because only the
first two moments have to be estimated. In the introduction
we argued, however, that the framework of the multivariate
normal and the associated correlation structure may not be
suitable for analyzing extreme linkages between asset mar-
kets. To be able to break away from specific distributional
assumptions, we investigate E[k|k = 1] when the condi-
tioning quantiles x and y become very large. To this end,
define the upper quantile functions for the returns X and Y
respectively as

Q,(tu) = (1 = F\)~'(tu),
Qx(tv) = (1 — Fy)"'(rv),

for some small but positive values u, v and a scaling
parameter 1. Choose u, v, and  such that tu and tv are
smaller than 1 and thus interpretable as excess probabilities.
Moreover, set Q(fu) = x and Q,(tv) = y, which are the
original crash levels from equation (1) that we are interested
in. In other words, we have inverted the cdf so as to work
out the asymptotic equivalent of our linkage measure in
terms of the (small) probabilities of having very extreme
returns. This will prove convenient below for bringing out
some nice properties of the measure.

Upon substituting the above quantile functions into equa-
tion (1), one obtains the following asymptotic equivalent for
that equation:

lim E[k|k = 1]
1—+0

f_I'P{X >_Q.£ﬂll)} = liIP{Y = Q:(Iy)}
t7'[1 = P{X = Q,(tu), Y = Os(tv)}]

(3)

= lim
t—==+0

utv

" Nu, v)°

The result of letting ¢ converge to 0 is that the excess
probabilities ru, rv also tend to 0, and hence the quantiles
become very large. Thus equation (3) says that very far from
the origin our linkage indicator is asymptotically equal to
the sum of the marginal probabilities divided by a limit
function /(u, v). The function /(u«, v) in the denominator in
equation (3) is the so-called stable tail dependence function
(STDF) and was introduced by Huang (1992). Multivariate
extreme value theory deals with existence conditions, prop-
erties, and estimators for this function; see Huang (1992) or
de Haan and de Ronde (1998).* The curvature of /(u, v)
completely determines the dependence structure between X
and Y in the tail area. Basic properties of [(u, v) are its
linear homogeneity and the inequality

max(u, v) < lu, v) = u + v (4)

5 The limit function exists if the joint extremal returns from X and Y lie
in the domain of attraction of a multivariate extreme-value distribution.
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Note: The varinbles on the axes are interpretable as asymptotic excess probabilities; see equation (6).
The lincar homogeneity of I(u, v) implies that a single unit contour line l(w, v) = | visually
charactenzes the tail dependence structure for each value of the dependence parameter d. The solid line
corresponds with full asymptotic independence, whereas the dashed lines reflect increasing dependence
in the tails.

Equality holds on the left-hand side if X and Y are com-
pletely dependent in the tail area, whereas it holds on the
right-hand side if X and Y are independent in the tail area.
Note that independence means that for all Q, and Q-

P{X <0, Y<Q,} = P{X < Q,}P{Y < Q,}, (5)

whereas tail independence only requires this factorization to
hold asymptotically. Thus it may well be that nonextreme
return pairs are dependent although their extremes are
asymptotically independent. The bivariate normal distribu-
tion with p € (—1, 1) and p # 0 constitutes such a case, for
example.

The linear homogeneity of /(u«, v) implies that all contour
lines exhibit the same shape toward the origin. Thus it
suffices to plot the unit contour line in order to get a full
graphical representation of dependence in the bivariate tail.
Moreover, the combined properties of /(u, v) imply that the
unit contour line is concave toward the origin, ending at (1,
0) and (0, 1) and being fully contained in the uniform
rectangular. For illustrative purposes consider the bivariate
cdf

F(.X, ‘,) - exp[_(xflftlfd) 5 yfll‘('lﬂll)lfd],
0=d<l1, x,y€][0,=),
with marginal Frechet distributions (see, for example, Gum-

bel, 1958). Upon taking the limit in the denominator of
equation (3), the STDF of this distribution boils down to

l(ll U) = (ullflfd] s UI.’H*:”)I *d‘

The dependence parameter d determines the degree of tail
dependence between X and Y. Figure 1 plots unit contour
lines (the asymptotic marginal probabilities on the axes are
normalized to u, v € [0, 1]) for this pair of random
variables for different values of d. The lower bound of
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asymptotic independence is hit when d = 0, and the unit
contour line coincides with the uniform rectangular (com-
plete asymptotic dependence) when d approaches 1.

The STDF relates marginal and joint probabilities as
follows. First define the excess probabilities p; = P{X >
X}.P2 = P{Y> \}, andpu =1 = P[X = X, Y = \.},
for ease of reference. Exploiting the homogeneity property,
one can easily show that the bivariate excess probability p»
and the marginal probabilities p, and p, are related via the
STDE. For sufficiently small r > 0,

Hu, v) =~ 17'[1 — P{X = Q,(tu), Y =< Q,(tv)}]. (6)
Choose tu = p, and tv = p;, so that l(u, v) = I(t"'p,,
t~'p,). Use the linear homogeneity of the STDF to write
ti(t~'p,, t7'ps) = I(p,, p>). Hence, for small values of p,
and p,, approximately,

I(p1, p2) = pra- (7)
Thus the joint probability p,, only depends on the marginal
probabilities p; and p, and the dependence function I( - , - ).
The linkage measure can thus be expressed as

Pt

E[leal]z-;-rz!(*pm. (8)
Assume for example that p;, = p, = p. Then, approxi-
mately,

2p 2

E[KlKZI]zNP.IT):I(].”' (9)

If both returns are completely dependent in the tails, that is,
I(1, 1) = max(1, 1), then E[k|k = 1] = 2 and the markets
cocrash with certainty. But without extreme comovements
in the two markets, E[k|k = 1] = 1, because I(1, 1) = 2.

III. Extreme Linkages: Estimation

The conditional expectation (1) is estimated by a two-step
estimation procedure. In the first step one estimates the
marginal extreme quantile cum probability combinations
(p1, p2). In the second step one imputes these univariate
probability estimates into an estimator for the tail depen-
dence function /( +, * ) in order to obtain an estimator for
p12. The estimation procedure therefore essentially exploits
equation (7).

Univariate excess probability estimation uses the stylized
fact that asset return distributions exhibit heavy tails.
Loosely speaking, this implies that the excess probability as
a function of the corresponding quantile can be approxi-
mately described by a power law. The defining characteris-
tic of these distributions is the property of regular variation
at infinity,
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I — Flgx)

= >
| — Flg) e

lim . x>0,

g—x

(10)

From this property it directly follows that such distributions
(for example, the Student ) have bounded moments only up
to o, where a is known as the tail index. In contrast,
distributions with exponentially decaying tails or with finite
endpoints have all moments bounded.

Univariate excess probabilities for fat-tailed marginals
can be estimated by using the semiparametric probability
estimator from de Haan et al. (1994):

A = ’" (XH'HJJI)E
Pq L= n q »

(11)
where the tail cutoff point X, ,, , is the (n — m)™ ascending
order statistic (or, loosely speaking, the m™ smallest return)
from a sample of size n such that lim[1/m(n)] = 0 butm =
o(n), and where the extreme (probability quantile) combi-
nation ( f,, q) is such that g > X, —m.n-® An important aspect
of the estimator p, is that it can extend the empirical
distribution function outside the domain of the sample by
means of its asymptotic Pareto tail from equation (10). The
estimator (11) is conditional upon the tail index o. We
estimate the tail index by means of the popular Hill (1975)
estimator:

(% X .
) ln(x' ) (12)
f:L n—mmn/

i}

where m has the same value and interpretation as in equa-
tion (11) and & = 1/4 stands for the estimated tail index.
Further details are provided in Jansen and de Vries (1991)
and the recent monograph by Embrechts, Kliippelberg, and
Mikosch (1997).

The estimation of the bivariate excess probability p,
either requires adopting a specific functional form for the
STDF, as in Longin and Solnik (2001), or proceeding
semiparametrically. Because there does not exist a unique
parametrization for the STDF, we pursue a semiparametric
estimation method based on the highest order statistics. Let
t = k/n in equation (6), such that lim[1/k(n)] = 0, but k =
o(n). (The role of the nuisance parameter & corresponds to
that of m in the univariate estimation step.) Because the
marginal probability estimates are available from the uni-
variate step, we can also replace (u, v) by (fp, p1):

. n kp kps
[( n].ﬁz) = l].m P X = Q| - | or Yz Q2 " (13)
e K n, n,
5In financial risk management the scaling parameter g is usually
referred to as the “value at risk (VaR).” and it is often used in a reversed
fashion: what is the VaR §, for a given probability p?
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In order to turn this expression into an estimator for /( *
we replace P{-}, Q,(-), and Q,(-) by their empirical coun-
terparts, so that approximately

n

E I{X = X,, [kp1)n or Y = Y" “I"]”}

(14)

where 1 denotes the indicator function and where [ x] is the
integer satisfying x = [x] < x + 1. So, loosely speaking,
the estimator of [ boils down to counting the instants at
which one or both of the markets experience an extreme
return within a given sample period.

Because the marginal probability arguments of the STDF
are typically smaller than the reciprocal of the sample size
n, the empirical probability measure (14) is not operational.
However, one can increase the number of excesses by
scaling up the marginal probabilities in equation (14) by a
factor A > 1 and exploiting the linear homogeneity property
I(p\, pa) = N'I(Np,, Np7).” Huang (1992) proposed to
transform the marginal probability pair (p,, p,) to polar
coordinates (# cos &, 7 sin ¢) such that A\ = 1/#.® The polar
coordinate representation of the empirical measure (14) is

p1, = Fl(cos &, sin b)
(15)

n

F E l(‘er > Xu [k cosd].n O Yi = n=[k \'inri)].n)'

i=|

This estimator evaluates ! on the unit circle, which is
convenient in that it is based on a larger set of observations
than equation (14). Notice that this procedure of counting
coexceedances is easily applicable in higher dimensions. An
estimator for the expected number of simultaneous crashes
E[x|k = 1] directly follows if one replaces p,. p,, and p,,
in equation (8) by their respective estimators in equations
(11), (12), and (15):

Elx| >1]_cos&)+sirg§ 7
~LKIK= " l(cos &, sind) S

The entire estimation procedure thus depends on three
estimators (11), (12), and (15) that are easy to calculate.
Conditional on the proper choice of the nuisance parameters
m and k, the three estimators are asymptotically normally
distributed. Goldie and Smith (1987) and Huang (1992)
propose to pick m and k in a range that minimizes the

" Appendix C provides a discussion of the approximate character of
linear homogeneity in finite samples. More specifically, it is shown that
the finite-sample character of the estimator [ together with the inward shift
of the quantiles on assuming homogeneity creates an upward bias in the
extreme linkage estimates for E. This bias may be empirically relevant in
small samples.

% Consistent estimators fnr th angle and radius are provided by & =

arctan( p,/p,) and # = \“n + pa, respectively.
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respective asymptotic mean squared errors (MSEs).® Con-
sequently, minimizing the sample MSE is the appropriate
selection criterion. In small samples best practice is to plot
the estimators as a function of the threshold, that is, § =
J(m) and [ = [(k), and to select m and k in the region over
which the estimators tend to be constant. !

IV. Extreme Linkages: Hypothesis Testing

The asymptotic normality of the estimators enables some
straightforward hypothesis testing. Hall (1982) showed for
min — 0 as m, n — = that the statistic \F[y(m My — 1]
is asymptotically standard normally distributed. A test for
the equality of tail indices can thus be based on the follow-
ing T-statistic:

'?2("12)
Fa2(m,)]’

Yi(my) —
o[§:(m) —

T= (17)
which converges to a standard normal distribution in large
samples. The denominator’s standard deviation is calculated
as the standard deviation of the bootstrapped difference
91 — 4> (we chose the number of bootstraps equal to 600).
Small-sample properties of tail index estimators are studied
in (for example) Dekkers and de Haan (1989).

Huang (1992) has proven the asymptotic normality of the
estimator (15) for k/n — 0 as k, n — . We use this to
compare the amount of extreme dependence across different
return quadrants. For a pair of stock and bond markets, we
can test whether a cocrash (for example, through contagion)
is more likely than flight to quality from stocks into bonds
or vice versa by calculating the following Z-statistic:

leolks) = Terqlks)
Z=— = 18
allcolky) — fFrc,x(kz)] L

which has a standard normal distribution in large samples.
The denominator’s standard deviation is calculated as the
standard deviation of the bootstrapped difference [ — Irrq
(again with the number of bootstraps set equal to 600)." In
equation (18) the subscripts CO and FTQ on the STDF
estimates refer to stock cum bond market cocrashes and
stock market crashes cum bond market booms (flight to
quality), respectively.

It is also of interest to pretest for the presence of asymp-
totic dependence in specific market pairs. Peng (1999)

9 If the value chosen for m or k is too small, then the respective estimate
is inefficient, because not enough observations are used. If it is too large,
then one incurs a bias, because the interior of the distribution is measured
rather than the tails, For a given sample there exists an intermediate range
of values for which bias squared and variance vanish at the same rate, but
outside this range one of the two parts dominates and the asymptotic MSE
is higher.

10 Plots are available from the authors upon request. See, for example,
Embrechts et al. (1997) and de Haan and de Ronde (1998) for this
widespread practice in small samples.

11 The tail dependence function is evaluated at (1, 1) along the 45-degree
line for convenience.
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proposes a testing procedure that starts from a general
second-order expansion for [(u, v) in finite samples:

Wu, v) = u+ v—clu, v)I'""'[1+ 0(*)],

(19)

nme,1], B=>0.

The value of the tail dependence coefficient n governs
whether extremal returns are asymptotically dependent or
not. The function ¢(u, v) is a concavity term that is retained
far into the bivariate tail (+ — 0) only if the exponent n) =
1, indicating asymptotic dependence. If the joint distribution
is asymptotically independent, then ny < 1. For example, in
case of independence, n = % and ¢(u, v) = wuwv, so that I(u,
v) =~ u + v — uvt [and hence as t — 0, l(u, v) = u +
v asymptotically]. A heuristic derivation of an estimator 7
for the tail dependence coefficient is provided in appendix
A. This estimator enables one to test the Hy : m = 1
(asymptotic dependence) against the H, : my < 1 (asymptotic
independence) by means of the statistic

(20)

which is asymptotically normally distributed under Hy. The
asymptotic standard error (1)) can be expressed in terms of
the limiting dependence function and its partial derivatives
(see Peng, 1999).

Because only a fraction of our original data set enters the
estimators and test statistics for extreme dependence pat-
terns, we investigated the small-sample properties of the
tools developed. In appendix B we describe Monte Carlo
simulations to discuss the small-sample behavior of both the
Z-statistic and the W-statistic. The results show that the
left-tail critical values for Z lie reasonably close to their
limiting values, whereas we find some evidence for size
distortions in W. However, if one uses the small-sample
critical values instead of their asymptotically normal coun-
terparts, the empirical section’s test results for asymptotic
dependence hardly change. As for the small sample power
of W, it might be low if n is close to 1 under the alternative
hypothesis of asymptotic independence.'? Heffernan (2001),
however, shows that a majority of parametric models with
asymptotically independent tails exhibit a tail dependence
parameter T equal to %, making the local alternatives prob-
lem relatively unlikely to occur.

Regardless whether the data are asymptotically indepen-
dent or not, in the end we are interested in the accuracy of
the linkage measure E[k|k = 1] evaluated for large but
finite crash levels. Appendix C contains both analytical
results and Monte Carlo evidence on the small-sample bias
in the linkage estimator. We report simulation results on this
bias for three data-generating processes: independent nor-
mal data, bivariate normal data that are asymptotically

2 For example, take the case of the bivariate normal with correlation
coefficient p. In this case n = (1 + p)/2, p € (—1, 1).
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independent but exhibit nonzero correlation, and bivariate
Pareto data that exhibit asymptotic dependence. It transpires
that for the sample sizes we are working with and at the
typical correlation level in our data, the estimates of the
linkage measure provide a conservative upper bound for
extreme market spillovers. Moreover, the bias seems more
severe if the data are asymptotically independent. The
simulations also show that with a data set 10 times larger
than the current one, the bias disappears almost completely.

To conclude, from both the power and the size study of
the W-test and from the performance of the linkage measure
in small samples we infer that the results for the true data
reported below provide an upper bound on the amount of
extreme linkage between different financial markets. As we
will argue below, the upper bound interpretation will make
some of our results even stronger.

V. Extreme Linkages: Results for G-5 Countries

In this section we evaluate the extent of extreme comove-
ments within and between stock and bond markets. The data
consist of 663 (nonoverlapping) weekly stock and government
bond returns for the G-5 market indices over the period 1987
to 1999. A detailed description of the data is given in appendix
D. We start with the univariate stock and bond market ex-
tremes, eyeballing first indications for their joint occurrence.
Then we turn to the systematic application of our extreme
linkage measure and the tests of extreme dependence patterns.

A. Extreme Returns in Stock and Bond Markets

In the univariate step, we report tail index and quantile-
probability estimates on the basis of equations (12) and (11).
Table | contains information on the magnitude and timing
of the most extreme in-sample events for stocks (panel A)
and bonds (panel B). The table also gives the estimates of
the tail index « and the accompanying tail probabilities
conditioned on different quantile levels. Within both panels
we further distinguish between the upper and the lower tails
of the univariate return distributions in order to take into
account possible asymmetries.'?

From the table we see that extreme losses are generally
much higher for stock indices than for government bond
indices. Moreover the historical extremes point toward
asymmetries in stock index returns: the (absolute) extreme
loss returns consistently exceed the maximum positive re-
turns.'* When comparing the entries for stock and bond

4 For reasons of space the nuisance parameters m on which the Hill
estimator and the tail probability estimates are conditioned are omitted
from the table. The values, which varied between 10 and 50, are available
from Table 1 of the underlying working paper (Hartmann, Straetmans, &
de Vries, 2001).

4 On Friday, October 16, 1987 the UK stock market remained closed
due to a hurricane. Therefore, the weekly return in the UK for the period
around Black Monday is calculated from Thursday to Friday, not from
Friday to Friday. As a result the figure of a 25% fall (much higher than for
the four other countries) might somewhat overstate the London crash in
relative terms.
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TaBLE 1.—MiINIMA, MAXIMA, TAIL INDEX, AND UNIVARIATE TAIL PROBABILITY ESTIMATES FOR WEEKLY G-5 ASSET RETURNS (1987-1999)
A. Stocks
Left Tail Right Tail
P{X < —q) PIX > g
Country Min (%) [ —15% —-20% max (%) il 15% 20%
GE —13.81 332 0.05013 0.01926 11:57 4.68 0.00591 0.00153
(10/2/98) (10/16/98)
FR -11.12 324 0.03320 0.01308 9.61 5.68 0.00202 0.00039
(10/23/87) (10/16/98)
UK —24.83 376 0.01129 0.00382 8.19 4.54 0.00340 0.00090
(10/23/87) (9/18/92)
uUs —13.60 233 0.05009 0.02559 725 5.56 0.00086 0.00017
(10/23/87) (10/16/98)
P —13.32 3.07 0.05337 0.02209 11.18 4.61 0.01495 0.00397
(10/23/87) (8/21/92)
B. Bonds
Left Tail Right Tail
P(X < —q) P(X > q)
Country Min (%) a 6% —8% max (%) & 6% 8%
GE —6.61 5.39 0.06564 0.01393 37 5.57 0.00749 0.00151
(12/30/94) (1/9/98)
FR —-5.14 6.01 0.03202 0.00568 5.21 5.58 0.00568 0.00114
(10/28/94) (10/23/87)
UK —6.35 3.91 0.03412 0.01109 4.81 4.46 0.02771 0.00767
(10/9/98) (4/10/92)
us —5.41 345 0.08996 0.03301 9.77 i 0.04323 0.01480
(5/15/87) (10/23/87)
JP -5.08 4.58 0.03497 0.00936 4.30 2.84 0.05164 0.02277
(12/25/98) (11/6/87)

Note: & is the reciprocal of the Hill estimator in equation (12). Marginal probabilities P are conditioned on extreme stock and bond market return quantiles near the historical sample boundaries and are calculated

using equation (11). Weekly prices were sampled on Fridays.

markets, the timing of the extreme events, as recorded in
parentheses, suggests the presence of cocrashes and flight-
to-quality effects during periods of market turbulence. Indeed,
all stock markets covered, except for Germany’s, reached
historically low returns in the week of Black Monday. As an
aside, the table also shows that three stock markets (FR, GE,
US) exhibited parallel record gains as a consequence of a
major rebound in mid October 1998 following the Russian and
LTCM crises, and two stock markets (JP, UK) exhibited com-
parable record gains around the September 1992 European
currency crisis.'> The casual extreme linkage evidence is less
clear for the bond markets. For example, none of the largest
bond index corrections occurred during the February-to-June
1994 fixed-income market turmoil, and only the United King-
dom experienced a record slump in the aftermath of the LTCM
crisis. The October 1987 rallies in the French and U.S. bond

'S The October 1998 stock market rallies occurred in an environment of
high uncertainty and volatility in international financial markets. They
seem to be directly related to the U.S. Fed's emergency interest rate cut on
October 15. On that day the Federal Open Market Committee decided to
reduce both the Fed funds target rate and the discount rate by 25 basis
points (see Federal Reserve Board, 1998a). This action surprised markets,
because it happened by means of an FOMC telephone conference between
the scheduled meetings of September 29 and November 17 (see Federal
Reserve Board, 1998b, conference call). Three weeks before, the Federal
Reserve Bank of New York had coordinated a private-sector bailout of the
Long-Term Capital Management hedge fund (see Greenspan, 1998).
During the same period exchange rates also experienced historical jumps,
notably in the form of an unprecedented yen appreciation (see Hartmann,
Straetmans, & de Vries, 2003, table 1).

markets (and perhaps also the Japanese rally two weeks later)
are suggestive of a flight-to-quality effect from stocks into
government bonds.

We turn to the remaining columns in table 1. The left-tail
index estimates are highest for the bond returns, indicating
thinner lower tails than for the stocks. This reflects the more
limited downside risk of government-bond investments.
Moreover, and in contrast to the bond series, the point
estimates & for the left tail of the stock index series are
lower than their right-tail counterparts. This is consistent
with the observed asymmetry between the minimum and
maximum stock returns reported in the left part of the table
and also squares well with the results reported by Longin
and Solnik (2001). Using the 7-test as defined in equation
(17), we formally tested for equality of tail indices across
lower and upper tails and across assets. It turned out that
only in the French and U.S. stock markets are the larger
sizes of left tails statistically significant in our sample. And
again, only for France is the left stock market tail signifi-
cantly thicker than the left bond market tail. In almost all
other cases the null hypothesis of equal tail indices could
not be rejected.'®

The economic issue of interest, both for the general
assessment of financial market stability and for financial
institutions’ risk management, is the likelihood of the

!6 Further details on test results are reported in the underlying working
paper (Hartmann et al., 2001, appendix 1) and are available on request.
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TABLE 2.—CR0SS-BORDER EXTREME LINKAGES WITHIN STOCK AND BOND MARKETS (1987-1999)

Stocks Bonds
E E

Pair w p —15% —20% W p —6% —8%
GE-FR 0.601 0.686 1.283 1.263 —0.251 0.600 1.194 1.164
GE-UK —0.457 0.575 1.149 1.130 —0.859 0.438 1.124 1.109
GE-US —-1.206 0.470 1.140 1.148 —0).466 0.291 1.075 1.090
GE-JP ~0.437 0.314 1.205 1.216 -1.307 0.198 1.041 1.051
FR-UK ==11.181 0.589 1.220 1.208 —0.758 0.491 1.071 1.085
FR-US =1.156 0.497 LLYS 1.201 —1.059 0.363 1.077 1.049
FR-JP —1.159 0.322 1.148 1.142 —0.691 0.129 1.030 1.023
UK-US —1.404 0.546 1.135 1.079 -0.512 0.425 1.075 1.100
UK-IP -1.370 0.361 1.071 1.057 —1.340 0.184 1.094 1.104
USs-Ip —0.888 0.328 1.104 1.119 —0.876 0.164 1.079 1.079

Note: W refers to Peng's asymptotic dependence test in equation (20). The extreme linkage measure E is conditioned on extreme quantiles near the historical sample boundaries and is estimated using cquation

{(16). Unconditioned (full-sample) correlation estimates are reported for comparison.

extreme returns as reflected by the tail probabilities. The
reported probabilities are expressed over a yearly time
horizon by multiplying the weekly probability estimates
from equation (11) by a factor of 52. First, note that the
excess probabilities are conditioned on different quantiles
for stocks and bonds with an eye toward the historical
minima and maxima displayed in table 1. One reason why
conditioning crash levels are deliberately chosen to be in the
vicinity of the historical extremes is to get a feeling for the
probability of worst-case losses over a longer period of time
such as a year in our case. Another reason, perhaps even
more important for policymakers, is that there can be little
doubt that such extremes constitute severe securities market
crisis situations.

An interpretation of the loss levels in the table is as
follows. For example, the entry 0.02559 for the left tail of
the U.S. stock index implies that a 20% weekly crash on
average happens once per 1/0.02559 =~ 39 years (a 15%
decline, a figure closer to the one for the week of the 1987
stock market crash, would happen approximately every 20
years). In U.S. government bond markets a weekly decline
of 8% is expected to occur approximately once per 30 years
(and a 6% decline—close to the historical negative extreme
in table l—once every 11 years). In other words, such
crashes are rare events, but not so uncommon as one might
believe. Compare these estimates with a normal-
distribution-based estimate, which predicts weekly crashes
in U.S. common stock of 20% or more to happen only once
per 31.5 X 10% years!

B. Extreme Comovements Within and Between Stock and
Bond Markets

In the bivariate step we first look separately at extreme
linkages between G-5 stock markets and between G-5 bond
markets (table 2); then we consider domestic and interna-
tional cross-asset market linkages (table 3). Both tables
contain the W-pretest on asymptotic dependence [equation
(20)], the correlation coefficient p, and the estimated linkage
measure [equation (16)]. The linkage estimates are condi-
tioned on the same extreme stock and bond return quantiles

as in table 1 (see the discussion of their levels in the
previous section). Displaying two crash levels for each asset
class will allow for some sensitivity analysis. Also, the
quantile pairs on which the linkage estimates are condi-
tioned in tables 2 and 3 are chosen so that the corresponding
univariate excess probabilities (table 1) are of similar order
of magnitude and equation (9) approximately applies.

Table 2 reports estimation and testing results on extreme
linkages within the same asset class (across borders). First,
the W-test never rejects the null of asymptotic dependence
at the 5% significance level for either of the two asset
categories. Appendix B suggests some caution when testing
asymptotic dependence in small samples, particularly re-
garding the use of asymptotic (normal) critical values.
However, when using the small-sample critical values for
the W-test in table 2 (and also in table 3 below), hardly any
of the test results change. Second, the extreme linkage
estimates are only marginally altered when shifting the
conditioning quantiles further outward. Also, with the ex-
ception of the continental European country pair GE-FR,
which exhibits the most highly interlinked stock and bond
markets, no clear geographical patterns of crisis linkages
can be discerned. Most strikingly, however, and regardless
of the conditioning quantile pairs, extreme cross-border
linkages at the lower tail are stronger within stock markets
than within bond markets. For example, for the pair con-
sisting of Germany (GE) and the United States (US), only 1
out of 6 (=1/0.148) stock crashes is expected to be a 20%
cocrash. However, only 1 out of 13 (=1/0.075) bond
crashes in the United States or Germany is expected to be a
6% cocrash.

To illustrate this in yet another way, we plot estimated
contour lines for stock and bond tail dependence between
Germany and Japan in figure 2 (the figure illustrates an
empirical semiparametric application of the STDF intro-
duced in section I1, whereas figure 1 provided a theoretical
illustration for a given parametric distribution). As a bench-
mark for comparison the linear contour line corresponding
to asymptotic independence is also entered in the figure. The
estimated contour lines reveal a degree of limiting depen-
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FIGURE 2.—ESTIMATED UNIT CONTOUR LINES FOR STOCK
AND BoND PAIRS (GERMANY, JAPAN)

Note; The estimator {14) is used o estimate unit contour lines (the dotted and dashed lines) by letting
the angle & vary over the first quadrant. The dashed and dotted lings represent the limiting dependence
structures for the German-Japanese pair of stock markets and the Germun-Japanese pair of bond markets,
respectively. The solid straight line corresponds with. asymptotic independence and is included for
companson

dence that is clearly higher for stock market pairs than for
bond market pairs. The bond market contour lies close to the
asymptotic independence benchmark case but is still signif-
icantly nonlinear (cf. the results in table 2 on significant
asymptotic dependence between pairs of bond market re-
turns). Note that the greater propensity of stock markets to
extreme comovements than that of government bond mar-
kets is not an artifact created by the choice of conditioning
quantiles, for the stock market quantiles are not less extreme
compared to historical stock market experience than the
bond market quantiles compared to bond market experi-
ence.

One may be tempted to interpret the potential for stock
and bond cocrashes in Table 2 as small. However, compared
to the unconditional univariate probability of experiencing a
crash in a specific market (table 1), the (conditional) prob-
ability of having a crash in this market given that there is
already one in another market is markedly higher. This
illustrates the relevance of phenomena like contagion or
joint crises as a consequence of a common shock. In other
words, although severe securities market crises seem to be
fairly rare events if one predicts them without using price
information from other markets, it is not that unlikely for
crashes to occur jointly once one market is hit by a crisis.
Nevertheless, the spillover probabilities estimated do not
appear very high in absolute terms either, rarely exceeding
20%. This means that whereas contagion or joint securities
market crashes are of practical likelihood, they do not seem
to be prevalent among the G-5 countries. This point may be
further strengthened by noting the potential for an upward
bias in the linkage estimator for small samples (see section
IV and appendix C).

Finally, we also included full-sample correlations as a
traditional linkage measure in table 2. One might easily
interpret these as suggesting even higher linkages, but that
is rather illusory. Suppose one applied the bivariate normal
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distribution to assess the extreme stock-stock and bond-
bond market linkages, say, between France and Germany,
the two most financially interlinked economies in table 2
(using the sample variances and correlations, with only the
latter shown in the table). One would find that codepen-
dence is absent for stock markets in both countries at the
20% level. In fact, we only find codependence for crash
magnitudes of 15% or lower (1 out of 228 stock crashes is
then expected to be a cocrash). As for bonds, an 8% crash is
expected to spread in only 1 out of 1,667 cases. Hence, the
multivariate normal massively underrates extreme financial
market linkages.'”

Table 3 contains estimation and testing results on extreme
linkages across asset classes, allowing for comparisons of
stock-bond cocrash probabilities with the flight-to-quality
phenomenon (the probability that a bond market booms,
given that a stock market crashes). The table is further
divided in two panels. The upper one (panel A) gives the
results for stock-bond market linkages within a specific G-5
country, and the lower one (panel B) details international
stock-bond market linkages between the G-5 countries. In
the lower panel we adopt the convention that the first
country mentioned has the stock market crash and the
second country the bond market crash or boom. This allows
us to treat the country pairs in panel B asymmetrically in
terms of conditioning. This refinement enables us to look
below at a new phenomenon, namely safe-haven behavior
by investors.

The two left-side columns show results for the W-test of
asymptotic dependence in the lower tails (Wep) and be-
tween the lower and the upper tails (Wgrg) using equation
(20). The pretest statistics do not indicate a rejection of
asymptotic dependence for most asset market pairs. Only
for the GE-FR pair in row 6 is the hypothesis of asymptotic
cocrashes between German stocks and French bonds re-
jected at the 5% level (but not for French stocks and
German bonds, as shown in the row below). In other words,
for most pairs of G-5 countries our data display statistically
significant interdependence among financial markets during
periods of crisis.

Given that there is asymptotic dependence both between
the losses on stocks and bonds and between stock losses and
gains in the bond markets, it is of some interest to test for
the equality of the two effects using the Z-test from equation
(18) in column 3.'® The test shows that cocrashes dominate
flight to quality in only 2 out of 25 cases (in both cases at the
1% significance level; see the two asterisks in the Z

17 Due to the risk of biased correlation coefficients when conditioning on
different ranges of the return distribution’s support (Boyer et al., 1997:
Forbes & Rigobon, 2002) and due to the extreme quantiles needed for
calculating our conditional linkage indicator, we report the regular corre-
lation coefficient for the whole distribution rather than conditional corre-
lations in tables 2 and 3. All probabilities displayed in the text are derived
from bivariate normals using these unconditional correlations.

¥ The Z-test value for the GE-FR pair is omitted from table 3, because
its limit distribution is degenerate under asymptotic independence.
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TABLE 3.—DOMESTIC AND INTERNATIONAL EXTREME STOCK-BOND LINKAGES: COCRASHES VERSUS FLIGHT TO QUALITY (1987-1999)

Test Statistics

A. Domestic
Linkage Estimates

Eco Errg
Country Weo Wrro Z p (—20; —6) (—20; —8) (—20; 6) (—20; 8)
GE —().881 —0.265 0.311 0.190 1.034 1.027 1.061 1.034
FR ~=0.906 -0.974 =1.753 0.248 1.069 1.115 1.050 1.055
UK —0.740 —0.463 —3.992% 0.217 1.040 1.059 1.057 1.073
us —0.658 -0.906 —=0.432 0.235 1.030 1.052 1.059 1.046
P -0.719 —1.376 0.099 0.051 1.061 1.092 1.036 1.050
B. Cross-Border
Test Statistics Linkage Estimates
Eco Errg
Pair Weo Werg x p (=20; =6) (—20; —8) (=20; 6) (—20; 8)
GE-FR —2.452% —0.681 — 0.187 1.114 1.093 1.071 1.057
FR-GE 0.468 -0.534 =0.310 0.172 1.050 1.039 1.044 1.039
GE-UK -1.271 —1.031 0.000 0.079 1.035 1.078 1.087 1.059
UK-GE —-0.362 —0.437 0.810 0.083 1.022 1.053 1.062 1.052
GE-US —1.445 -0.314 —-0.914 0.015 1.023 1.035 1.078 1.079
US-GE —0.490 0 0.600 0.122 1.044 1.060 1.056 1.057
GE-JP —0.450 —-0416 0.277 —=0.056 1.045 1.096 1.090 1.068
JP-GE —0.413 —-0.861 0.683 —=0.000 1.038 1.014 1.028 1.031
FR-UK -1.107 0 =0.367 0.165 1.076 1.052 1.065 1.080
UK-FR —-1.013 —0.269 —0.874 0.102 1.049 1.068 1.068 1.051
FR-US —0.473 —1.459 0.831 0.101 1.030 1.080 1.030 1.077
US-FR =0.795 —-0.939 0.718 0.097 1.033 1.028 1.028 1.030
FR-IP —0.498 —0.891 1.000 =0.007 1.055 1.041 1.047 1.083
JP-FR —1.269 —1.334 —0.467 0.021 1.043 1.038 1.026 1.036
UK-US —0.681 —-0.285 0.663 ~0.055 1.021 1.025 1.058 1.083
US-UK —0.456 =0.721 1.267 0.141 1.024 1.038 1.052 1.052
UK-JP —0.855 -0.270 0.778 -0.015 1.018 1.016 1.048 1.080
JP-UK -0.706 =0.640 —0.925 0.042 1.048 1.049 1.041 1.032
Us-Ip —0.244 —(.744 0.516 0.068 1.088 1.069 1.058 1.080
JP-US —1.426 -0.496 -2.118% =0.011 1.034 1.050 1.070 1.033

Note: The pairs in panel B consist of & stock market (first country in each puir) and & bond market (second country in each pair), implying that one has to consider two stock-bond pairs for cach pair of countries.
Columns 1 and 2 report the W-test for the presence of stock-bond cocrashes (third data quadrant) or flight to quality (second data quadrant), respectively. The Z-statistic in column 3 reflects whether the difference
between stock-bond contagion and flight to quality is statistically significant. * denotes statistical rejections at the 1% significance level Columns 5-6 and 7-8 contain extremal linkage estimates reflecting the
frequency of stock-bond cocrashes or flight to quality, respectively. The conditioning quantile pairs (expressed in percentages) are chosen in the vicinity of the historical sample boundaries.

column). For all other countries and market pairs the two
effects are not significantly different from each other. On the
other hand, the stock-bond correlations in table 3 are in most
cases positive, which may be read as suggesting that
cocrashes dominate flight-to-quality phenomena. This ap-
parent difference between correlations and our extreme-
events approach illustrates that full-sample correlations are
unreliable as indicators for the direction of extreme co-
movements. One interpretation of these results on extreme
cross-asset linkages (in particular the nonnegligible occur-
rence of FTQ) is that capital fleeing one market has to go
somewhere else. This puts some bounds on how far conta-
gious financial market crashes can reach.

The remaining columns report estimates of the condition-
ally expected number of simultaneous crashes in stocks and
bonds (Ec) and for flight to quality from stocks into bonds
(Eprg). Apart from the now asymmetric conditioning, the
extreme linkage results can be interpreted in the same
manner as in the previous table. For example, for the pair
consisting of France (FR) and the United Kingdom (UK) we

expect that roughly 1 out of 20 (=1/0.052) stock crashes at
the 20% level in France will coincide with an 8% decline in
U.K. bonds. However, flight to quality from stocks into
government bonds seems more likely for this country pair,
because on average 1 out of 12.5 (=1/0.080) French stock
crashes of 20% are expected to coincide with a U.K. bond
market boom of 8%. For the reverse case (UK-FR) the
figures mean that joint crashes in U.K. stocks and French
bonds are more likely than a U.K. stock crash accompanied
by a flight to quality into French bonds (6.8% > 5.1%). Just
as in the previous table, the estimated extreme market
linkage indicators are only slightly altered upon changing
the conditioning quantile pairs.

In general, however, the expected values for cocrashes
and flight-to-quality phenomena are found to be comparable
in magnitude, that is, Egrg = Eco, as already suggested
by the Z-tests. Comparing the extreme linkage results in
table 3 with the figures in table 2, we see that the linkage
measures across different assets tend to be lower than
those for linkages across bond markets, so that roughly
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the following ordering emanates from the data: E >
ES > EX."

The patterns for extreme cross-border linkages in table 3
(panel B) are surprisingly similar to within-country linkages
(panel A). National borders do not seem to limit the degree
of contagion or flight to quality, which illustrates well a
potential disadvantage of international financial market in-
tegration from the perspective of domestic financial market
stability. Also, it is very hard to disentangle any clear
geographical patterns (for example, related to distance). For
example, the three European countries FR, GE, UK do not
seem to have systematically stronger extreme linkages with
each other than with US or JP.

However, there is some evidence of safe-haven behavior.
To see this compare the flight-to-quality effects for the
country pairs involving the United States in the two cases
XX-US and US-XX (XX = FR, GE, JP, or UK). For
example, the probability that a government bond market
rally in the United States coincides with a stock market
crash in France 1s 7.7% (FR-US). whereas the reverse case
in which the French bond market booms in case of a U.S.
equity market crash (US-FR) has only a 3.0% probability.
This relationship also holds for Germany and the United
Kingdom (Japan being the only exception). It shows the
historical role of U.S. government securities and the dollar
as a safe haven for European investors.

VI. Conclusions

The linkages between asset markets in periods of crisis
are characterized by their asymptotic tail dependence. From
this measure we derive nonparametric estimates for the
expected number of market crashes given that at least one
market crashes. This novel approach does not rely on a
specific probability law for the returns, and therefore has the
distinct advantage over the often used conditional correla-
tion measure that it cannot distort the view of the extreme
spillover likelihood. Thus the approach in this paper by-
passes the indirect method of computing a correlation and
subsequently inferring the probability of loss, by directly
calculating the economically relevant measure.

A first result for the G-5 countries from the univariate
analysis is that stock market crashes on the order of a 20%
weekly loss and government bond market crashes on the
order of an 8% weekly loss are rare events, but nevertheless
do happen once or twice per lifetime. Turning to the biva-
riate results, we found that stock markets experience a

' The extreme linkage results in tables 2 and 3 also have implications
for portfolio VaR estimations very far into the tails of financial market
return distributions. This is because the degree of extremal dependence
determines the potential for diversifying risk. For a given low significance
level, the VaR levels of pure stock portfolios will usually be higher than
those of mixed (stock-bond) portfolios, whereas one may expect those of
pure bond portfolios to take on an intermediate position. For readers
interested in the details of the implications of our work for risk manage-
ment these results are available upon request.

cocrash in approximately one out of five to eight crashes.
This number is lower for bond markets, and tends to be still
less for a cocrash between a stock and a bond market.

Nevertheless, returns of different G-5 securities markets
seem to be statistically dependent during crises. In particu-
lar, following up on the upper bound 20% ballpark estimate
for a cocrash between stock markets, given that for the
United States, for example, a crash happens only approxi-
mately once every 40 years and considering that bond
market or cross-asset cocrashes tend to happen less fre-
quently, one may conclude that a widespread securities
market meltdown in the main industrialized countries hap-
pens much less than once every 200 years. Also, the fre-
quency of such phenomena among G-5 countries is much
higher than what a normal-distribution-based analysis
would one lead to believe. On the other hand, the flight-to-
quality phenomenon is about as common as the cocrash of
a bond and a stock market, highlighting some limits to the
propagation of financial market crises across asset classes.
And finally, whereas the likelihood that a securities market
crisis reaches a certain breadth is of significant magnitude,
it does not seem large in absolute terms. This point is even
further strengthened by our finding that in small samples our
linkage measure may have a bias that leads to an overesti-
mation of the probability of extreme financial market spill-
overs. So, one implication of our analysis is that securities
market contagion (a severe crisis in one market spilling over
to another market) cannot be a prevalent phenomenon
among G-5 countries. Overall, our results seem to be in line
with some very recent literature arguing for other reasons
that the financial market contagion phenomenon may have
been overestimated in the earlier literature on financial
market crises (see, for example, Forbes & Rigobon, 2002).
This should not lead policymakers into complacency, for the
next crisis might still be broad and be associated with
contagion.

In line with free capital flows and financial integration
between G-5 countries, national borders do not seem to
matter very much. From the perspective of domestic finan-
cial stability this might sometimes be regarded as the
downside of such integration, suggesting that the surveil-
lance of financial market stability cannot stop at national
borders.
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APPENDIX A

Derivation of the Tail Dependence Coefficient

In this appendix we provide a heuristic derivation of the tail depen-
dence coefficient m used in the Peng test introduced in section IV.
Equation (19) implies for k, n —= @ and t = kin — 0

P{X > Q,(2k/n), Y > Q:(Eklnﬁ)]
P{X> Q,(kin), Y > Qu(kin)}  ©

(A-1)

Denote by X,, and Y, the i ascending order statistics of the two return
series. To estimate m from the sample we may replace P, Q,, and Q, in
equation (A-1) by their empirical counterparts. Therefore write

Clk. k) =k D UYX,> X, and ¥,> Y, ..}, (A-2)

and substitute equation (A-2) into (A-1). Taking logs renders

& = i (‘C,.(Zk, 2k))
R WX )

see Peng (1999), who also proved consistency and asymptotic normality
of the estimator. Consequently the test statistic W = (§} — 1)/o(f)
converges to a standard normal distribution and can be used to test the null
hypothesis of asymptotic dependence (H, : 7 = 1) against the alternative
hypothesis of asymptotic independence (H, : 7 < 1).
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APPENDIX B

Small-Sample Properties of Tests

In this appendix we study the small-sample properties of the Peng
pretest for asymptotic dependence [equation (20)] and of the Z-test
[equation (18)]. A Monte Carlo study of the size and power properties for
W requires choosing data-generating processes for simulating return pairs
under Hy and H,. As H; we choose the bivariate Pareto distribution on
[1, =) X [1, =),

Flx,y) = 1+(x+yp—=1)"—x=x"%

with correlation coefficient p = I/a (o being the tail index). Note the close
association between tail dependence and tail fatness in this distribution.
Asymptotically independent data are drawn from either a bivariate normal
or a bivariate Gumbel-Pareto distribution. The latter distribution is

G(x, ¥) =1 = x)(1 = y™)[1+yx~%™"], 0=y=1,

with correlation coefficient

ala — 2)

p=(2u— 1)3

v

Like the bivariate Pareto, the Gumbel-Pareto distribution has Pareto-
distributed marginals. But unlike the bivariate Pareto distribution, it is
asymptotically independent, because the tail dependence coefficient m
equals 2. Similarly, the bivariate normal distribution is asymptotically
independent, because m = (1 + p)/2. Interestingly, for the normal case the
tail dependence parameter varies with the correlation coefficient, but 7 is
constant for the Gumbel-Pareto distribution. These distribution functions
represent a sufficiently rich dependence structure to evaluate the W-test
performance.

In table B1 we report small-sample critical values for W under H,
(bivariate Pareto distribution exhibiting asymptotic dependence) for dif-
ferent significance levels 6, degrees of tail dependence o, and threshold
choices k. The values for @ and k are chosen in accordance with the
correlations observed in our data and the thresholds employed in the
empirical section, respectively.

The table suggests that one should be careful using the normal critical
values of —1.65 (8 = 5%) and —1.96 (8 = 2.5%) for testing asymptotic
dependence in small samples. Assuming that the empirical financial data
are also bivariate-Pareto-distributed, we can check whether the W-values
from the empirical section lie within the small-sample rejection areas from
table B1. More specifically, for each of the seventy asset pairs in tables 2
and 3 we selected the 8% rejection area for values of « and k that most
closely resemble their true values, that is, the estimated correlation and the
threshold choice for each asset pair.?® Despite the tendency for lower
critical values shown in table B1, we find that the empirical section’s test
results for asymptotic dependence hardly change.

Next we investigate the power properties of W. The simulation setup
consists of three steps:

1. We draw samples of size n = 663 from the bivariate Pareto (Hy),
the bivariate normal, and the bivariate Gumbel-Pareto (H,) distri-
bution and calculate m for the asymptotically dependent and inde-
pendent samples. We then condition estimates of m on k = 75 and
repeat this sampling scheme rep (=10,000) times. This renders
the small-sample distributions 7 (H,) and f™ (H,).

2. We estimate the 5% quantile of 7j by the order statistic #; ., with
ilrep = 0.05.

3. We evaluate the small-sample power:

rep

1
Py = E z ”Tl}r.‘:jrp < Tl..m»}-
j=1

20 Because of space considerations we did not report threshold choices
for each of the seventy empirical return pairs in tables 2 and 3. They are
available upon request.
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TABLE B1.—SMALL-SAMPLE CRITICAL VALUES OF THE W-TEST
FOR BIVARIATE PARETO DRAWS
W = 5%) W = 2.5%)
a k=25 50 75 25 50 75
2 —0.875 -1.274 —1.631 -0.925 -1.326 -1.693
3 —-0.822 —1.244 —1.628 -0.867 —1.289 =1.675
4 -0.770 —1.204 —1.600 —0.818 —1.250 —1.645

Note: Critical values are determined for Peng's W-test for testing asymptotic dependence. The small
sample df of W is obtained by 10,000 Monte Carlo replications from the bivariate Pareto df. The critical
values are conditioned on different values of the significance level 6, the tail index «, and the threshold
k of the il dependence function. The range of &k is consistent with the threshold values used in the
empirical application.

TABLE B2.—SMALL-SAMPLE POWER OF THE W-TEST

Hy (Bivariate Pareto)

a=2 3 4
H; (Normal)
p=0 86.94 73.49 60.52
p =025 61.53 37.59 21.88
p=205 21.62 5.26 1.15
H; (Gumbel-P)
vy=105 87.64 67.72 50.95
v =09 86.68 63.1 42.29

Note: The power of the W-1est is determined under the null hypothesis of a bivanate Pareto df and
under two different alternative hypotheses with asymptotically independent tails, The small-sample dfs
of W under asymptotic dependence and asymptotic independence are derived from 10,000 Monte Carlo
replications. The alternative models might exhibit some statistical dependence reflected by the parameters
p and v, but this dependence dies out very far into the tails. Further details on the power calculations are
provided in the main text.

Table B2 reports the power of W simulated by applying this procedure
(for k = 75). The power clearly decreases in «, reflecting the degree of
tail dependence for the null model (the stronger tail dependence under the
null, the higher the power). Moreover the power under the Gumbel-Pareto
alternative is nearly unaffected by changes in p because m = 0.5,
regardless of the correlation value. As for the power under the H, of
normality, it decreases when v (and thus p) is increased. This implies that,
for any given sample size and significance level, a normal alternative with
dependence parameter 7 close to 1 can be found that is indistinguishable
from the null model of asymptotic dependence, that is, the local alterna-
tives problem. However, Heffernan (2001) shows that a large majority of
parametric models with asymptotically independent tails are governed by
a tail dependence parameter of '2 . Thus, one might interpret the power
results under the normal alternative as the worst case to be encountered.

We also investigated the small-sample critical behavior of the Z-
statistic equation (18) by applying the above simulation setup. Table B3
shows that small-sample critical values are again deviating from their
asymptotic counterparts, but they are reasonably close to them for k-
values of 50 or 75. Applying these alternative rejection regions to the
Z-values in table 3 does not alter the test results. However, the Z-test may
exhibit low power in small samples.

TABLE B3.—SMALL-SAMPLE CRITICAL VALUES OF THE Z-TEST
FOR BIVARIATE PARETO DRAWS

Z(B = 5%) Z(0 = 2.5%)
a k=125 50 75 25 50 75
2 —1.438 - 1.500 —1.564 -1.716 —1.807 —1.872
3 —1.395 —1.534 —1.554 —1.670 —1.869 —1.813
4 —1.426 —1.571 —1.551 =1.700 —1.867 —1.853

Note: Critical values are determined for the Z-1est in equation (18) for 1esting equality of the cocrash
and flight-to-quality effects between stocks and bonds. The small sample df of Z is obtained by 10,000
Monte Carlo replications from the bivariate Pareto df. The critical values are presented for different
values of the significance level 8, the tail index «, and the threshold & of the tail dependence function




326

APPENDIX C

Small-Sample Properties of the Estimator

The linkage estimator (16) can be shown to constitute an upper bound
on the true amount of comovement in the crisis area. We show this both
analytically and by simulation. Let us start with the analytic argument.
Assume symmetric and equal marginal distribution functions such that
P{X > x} = P{Y > x| = p, where x is some crash level. The expected
number of cocrashes in the crisis area (1) can now be rewritten as:

2 2

= . —= — (
»= 7 PX> 0p) or¥> o) I,y o P 0

(C-1)

and where [(1, 1) is defined as in equation (3). This limiting relationship
suggests the following estimator for E:

2

Sl TR

(C-2)

with (1, 1) = k! Zhy UX; > Xy, 0t ¥; > ¥, ). Notice the
analogy with the proposed estimators in equations (15) and (16), the only
difference being that we allowed for marginal asymmetry and inequality
in the empirical section. It can now been shown that £ exceeds E, by
applying Peng’s finite-sample expansion for the bivariate tail (19) to the
denominators of £ and E,,.

To demonstrate this claim, note that the bivariate tail probability in the

denominator of E, is nested into Peng’s expansion for t = p and u =

v = 1

1
p'P{X > Q)(p) or Y= Qu(p)} =2 —cll, pa~'[1 + O(p)®].
(C-3)

Likewise we obtain a finite-sample expansion for /(1, 1) for r = k/n and
u = v = 1 in equation (19):

1
. E\=! kNP
(1, 1)=2—¢(1, D] - 1+o(—) E
n n,

The choice of p reflects the crisis area we are interested in. In the empirical
application we typically condition on crash levels Q| and O, at the sample
boundary or beyond, which corresponds to significance levels smaller than
the reciprocal of the sample size (p = n~!'). It then immediately follows
that equation (C-4) exceeds (C-3). Notice also that the second-order
expansions lie closer to each other when the bivariate tail exhibits
asymptotic dependence (m = 1). The small-sample bias in the linkage
estimator should thus be lower under asymptotic dependence than under
asymptotic independence.

We performed a Monte Carlo study of the small-sample bias, using a
bivariate normal distribution (asymptotically independent tails) and a
bivariate Pareto distribution (asymptotically dependent tails) as data-
generating processes. Estimated linkage measures are reported in Table Cl
for different sample sizes, threshold values k, and correlations p. The
reported estimates are averages over 100 replications. Correlations and
thresholds k are again chosen close to the observed correlations in the data
and values of k used in the empirical section. The theoretical linkage value
E, is also recorded and evaluated at the sample boundary (p = n').

The values of the measure provide an upper bound for the amount of
linkage E, during crisis periods. The amount of upward bias is higher in

(C-4)
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TABLE C1.—UpPWARD BIAS IN LINKAGE ESTIMATORS: BIVARIATE NORMAL
VERSUS BIVARIATE PARETO

n = 663 n = 5,000
Est. E[k] Est. E[k]
p k=25 50 75 E, 25 50 75 E,

A. Bivariate Normal

12 1.117 1.165 1.204 1.032 1.052 1.070 1.082 1.015

173 1.075 L1111 1145 1.012 1.022 1.032 1.042 1.004

0 1.018 1.040  1.060 1.000 1.002 1005 1.007 1.000
B. Bivariate Pareto

172 1.173 1.198  1.219 1.149 1.152 1.156 1.162 1.145

1/3 1.120 1.148 1.167 1.081 1.086 1.09 1.103 1.073

Note: The tble reports estimated values (Est. E) and “true” (analync) values (E,) of the extreme
linkage measure for the bivariate normal and bivariate Pareto dis and for different sample sizes n and
correlations p. Moreover, the linkage estimates are presented for different values of the threshold k. The
conditioning quantiles for the linkage estimates and analytic counterparts are chosen such that the
corresponding marginal excess probabilities are equal 1o the inverse of the sample size, that is, exactly
at the sample boundary,

panel A, which is consistent with our analytical considerations on the bias.
The difference between the asymptotically independent normal distribu-
tion and the bivariate Pareto distribution becomes apparent in the larger
sample. For data sets 10 times larger than the current sample (n = 663),
the normal-based linkage estimates start to approach | while the Pareto-
based estimates retain their higher levels.

APPENDIX D

Data Description and Discussion

Data were obtained from Datastream, Inc. G-5 countries are listed in
Tables 1, 2, and 3 with the following abbreviations: France (FR), Germany
(GE), United Kingdom (UK), United States (US), Japan (JP). The stock
data are Financial Times/Standard & Poors world price indices, whereas
the bond data correspond to price indices on 10-year (all-traded) govern-
ment bonds. We did not include corporate bond indices, because of our
particular interest in the flight-to-quality phenomenon. Returns were
calculated as log price differences, Friday to Friday, in local currency. The
stock and bond returns are not compensated for dividends and coupon
payments, respectively. The sample of daily raw data used started on
February 27, 1987 and ended on November 18, 1999, which amounts to
663 weekly observations.

Weekly data have the advantage that one significantly reduces the
typical time zone problems encountered with international data at the daily
frequency. Moreover, they capture more sustained crash phenomena,
which can be expected to have more significant effects on financial
institutions and the real economy than one would usually pick up with
daily returns. An even longer holding period was not possible, due to the
limited length of the bond index data available to us. Of course, the two
advantages of the use of weekly data mentioned above come at the cost of
not being able to address explicitly intraday or daily short-run dynamics
that could also help to understand crisis propagation mechanisms. Al-
though that is outside the scope of the present paper, in future work we
plan also to investigate the time structure of extreme financial market
spillovers by studying the following intertemporal specification of our
extreme linkage indicator: P(X, > x, ¥,.; = y) fork > 0.
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