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a b s t r a c t

Financial institutions rely heavily on Value-at-Risk (VaR) as a risk measure, even though it is not globally
subadditive. First, we theoretically show that the VaR portfolio measure is subadditive in the relevant tail
region if asset returns are multivariate regularly varying, thus allowing for dependent returns. Second,
we note that VaR estimated from historical simulations may lead to violations of subadditivity. This upset
of the theoretical VaR subadditivity in the tail arises because the coarseness of the empirical distribution
can affect the apparent fatness of the tails. Finally, we document a dramatic reduction in the frequency of
subadditivity violations, by using semi-parametric extreme value techniques for VaR estimation instead
of historical simulations.
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1. Introduction

Risk measurements have become an integral part of the oper-
ation of financial institutions and financial regulations, and most
proposals for regulatory reform due to the crisis emphasize bet-
ter understanding of risk. While a large number of risk measures
exist, value-at-risk (VaR) remains the most widely used risk mea-
sure. The reason is that its practical advantages are perceived to
outweigh its theoretical deficiencies. We argue that such a prefer-
ence is often theoretically and empirically justified.

VaR has been an integral part in banks’ risk management op-
erations ever since being mandated by the 1996 amendment to
incorporate market risk to the Basel I Accord: (Basel Committee,
1996), and continuing with Basel II. Over time, its importance has
increased, with financial institutions and non-financials alike, rou-
tinely using VaR in areas such as internal risk management, eco-
nomic capital and compensation.
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VaR has remained preeminent even though it suffers from the
theoretical deficiency of not being subadditive as demonstrated
by Artzner et al. (1999). In spite of this deficiency, both industry
and regulators in the banking sector have a clear preference for
VaR over subadditive risk measures such as expected shortfall
(ES) because of its practical advantages, primarily smaller data
requirements, ease of backtesting and, in some cases ease of
calculation. By contrast, the use of ES is becoming more prevalent
in insurance. From an industry and regulatory perspective it
is important to identify whether such a practically motivated
preference is justified.

VaR is known to be subadditive in some special cases such as
when asset returns are normally distributed in the area below
the mean, or more generally for all log-concave distributions, see
Ibragimov (2005). This is, however, not all that relevant since asset
return distributions exhibit fat tails, see e.g. Mandelbrot (1963),
Fama (1965) and Jansen and de Vries (1991). The implications of
this for VaR are discussed in Daníelsson et al. (2005) and Ibragimov
(2005). Using majorization theory, Ibragimov and Walden (2007),
Ibragimov (2009) and Garcia et al. (2007) demonstrate that
the VaR measure is subadditive for the infinite variance stable
distributions provided the mean return is finite, the latter
reference demonstrates this for general Pareto distributions. See
also the review in Marshall et al. (2011, Chapter 12). Their results
extend earlier work of Fama and Miller (1972, p. 270) who discuss
the effects of portfolio diversification when returns follow stable
distributions. Daníelsson et al. (2005), Ibragimov (2005) andGarcia
et al. (2007) also discuss cases of VaR subadditivity for distributions
with Pareto type tails when the variance is finite.
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Most asset returns belong to neither category, normal or
the infinite variance stable, and it is of considerable practical
importance to know whether the industry preference for VaR is
reasonable in such cases. Our main motivation is to investigate the
subadditivity of VaR for fat-tailed distributions in general, and we
arrive at three key results.

First, we identify sufficient conditions for VaR to be subaddi-
tive in the relevant tail region for fat-tailed and dependent distri-
butions. In this context, fat tails means that the tails vary regularly,
so that they approximately follow a multivariate power law such
as the Pareto distribution. Note that the infinite variance stable dis-
tributions are a subset of this class. Specifically, we prove that VaR
is subadditive in the relevant tail region when asset returns ex-
hibitmultivariate regular variation, for both independent and cross
sectionally dependent returns provided the mean is finite. Inter-
estingly, Ibragimov (2005, 2009) shows that this holds for distri-
butions that are in the intersection of the alpha-symmetric class
and the regularly varying class; the multivariate Student-t distri-
butions are part of this intersection. But the class of distributions
with regularly varying tails is much broader than this intersection,
as is the class of alpha-symmetric distributions. We construct an
explicit example of interdependent returns based on the portfolio
view of interbank connectedness as discussed in e.g. Shin (2009).
The only exception is asset returns that are so extremely fat tailed
that the firstmoment – themean – becomes infinite, whatwe label
super fat tails, the case discussed by Ibragimov andWalden (2007),
Garcia et al. (2007) and Ibragimov (2009). But in that case, any risk
subadditive measure dependent on the existence of the first mo-
ment, such as ES, is not defined.

Second, we investigate these asymptotic results by means of
Monte Carlo simulations, and find that this asymptotic result may
not hold in practice because of small sample sizes and choice of
estimation methods. In particular, estimation of VaR by historical
simulation (HS) is prone to deliver violations of subadditivity in
some cases, especially for increasingly extreme losses and small
sample sizes. The reason iswhatwe call the tail coarsenessproblem.
When only using a handful of observations in the estimation
of HS, where the estimate is equal to one of the most extreme
quantiles, the uncertainty about the location of a specific quantile is
considerable, and one could easily get draws whereby a particular
loss quantile of a relatively fat distribution is lower than the
same quantile from a thinner distribution. This could also induce
failures of subadditivity in empirical applications, even though
theoretically subadditivity holds.

Finally, we demonstrate how this estimation problem can be
remedied by employing the extreme value theory (EVT) semi-
parametric estimation method for VaR, proposed by Daníelsson
and de Vries (2000). Their EVT-based estimator corrects for most
empirical subadditivity failures by exploiting a result from EVT
which shows that regardless of the underlying distribution, so long
as the data is fat tailed, the asymptotic tail follows a power law,
just like the Pareto distribution. In effect, this method is based on
fitting a power law through the tail, thus smoothing out the tail
estimates and rendering the estimated VaR much less sensitive
to the uncertainty surrounding any particular quantile. Ultimately
this implies that subadditivity violations are mostly avoided.

The rest of the paper is organized as follows. Section 2 discusses
the concept of sub-additivity. In Section 3 we formally define
fat tails. Our main theoretical results are obtained in Section 4
with extensive proofs relegated to the Appendix. The Monte Carlo
experiments are discussed in Section 5 along with the estimator
comparisons. Section 6 concludes the paper.

2. Subadditivity

Artzner et al. (1999) propose a classification scheme for risk
measures whereby a risk measure ρ(·) is said to be ‘‘coherent’’ if

it satisfies the four requirements of homogeneity, monotonicity,
translation invariance and subadditivity. VaR1 satisfies the first
three requirements, but fails subadditivity. Let X1 and X2 denote
the random returns to two financial assets. A risk measure ρ(·) is
subadditive if

ρ (X1 + X2) ≤ ρ (X1) + ρ(X2).

Subadditivity is a desirable property for a riskmeasure because,
consistent with the diversification principle of modern portfolio
theory, a subadditive measure should generate lower measured
risk for a diversified portfolio than for a non-diversified portfolio.

In response to the lack of subadditivity for the VaR riskmeasure,
several alternatives have been proposed. The most common of
these alternative riskmeasures are expected shortfall, ES, proposed
by Acerbi et al. (2001) andworst conditional expectation proposed
byArtzner et al. (1999).While these riskmeasures are theoretically
considered superior to VaR, because they are subadditive, they
have not gained much traction in practice.2 Subadditivity of
positive homogeneous risk measures guarantees their convexity,
which facilitates the identification of optimal portfolios, see e.g.
Pflug (2005); Stoyanov et al. (2007). For example, Daníelsson et al.
(2007) show that ES remains very useful in portfolio optimization
problems, since it imposes a linear constraint, while VaR is a non-
linear constraint resulting in the optimization problem being NP
complete.

2.1. Statistical violations of subadditivity

That VaR can violate subadditivity is easily demonstrated.3 A
simple example with continuous distributions is:

Example 1. Consider two assets X1 and X2 that are usually nor-
mally distributed, but subject to the occasional independent
shocks:

Xi = ϵi + ηi, ϵi ∼ IIDN (0, 1),

ηi =


0 with probability 0.991
−10 with probability 0.009 i = 1, 2.

The 1% VaR for X1 is 3.1, which is only slightly higher than the VaR
if the shocks η would not happen, in which case it would be 2.3.
Asset X2 follows the same distribution as asset X1, whilst being in-
dependent from X1. Compare a portfolio composed of one X1 and
one X2 to a portfolio of 2 X1. In the former case, the 1% portfolio
VaR is 9.8, because for (X1 + X2) the probability of getting the −10
draw for either X1 or X2 is higher than 1%.

VaR(X1 + X2) = 9.8 > VaR(X1) + VaR(X2) = 3.1 + 3.1 = 6.2.

This example is especially relevant in the area of credit risk where
credit events are represented by the −10 outcome.

Alternatively,we can illustrate subadditivity violationswith the
following discrete example. The discrete case is of interest when
we turn to the Monte Carlo study, as data samples are necessarily
discrete.

Example 2. Suppose we throw two dice five times and obtain the
following results

1 Let X1 be the return, then for the probability p, VaR is the loss level such that
VaR = − sup {x| Pr(X1 ≤ x) ≤ p}.
2 See e.g. Yamai and Yoshiba (2002) for more on the practical problems with

alternative risk measures.
3 See e.g. Artzner et al. (1999), Acerbi and Tasche (2001) and Acerbi et al. (2001).
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Dice 1 Dice 2 Dice 1 + Dice 2

Throw 1 2 4 6
Throw 2 3 1 4
Throw 3 4 5 9
Throw 4 5 6 11
Throw 5 6 6 12

The VaR estimates at probability 1/3 are:
Dice 1 Dice 2 Sum Dice 1+Dice 2

VaR −3 −4 −7 −6

Note that the VaR at p = 1/3 are the realizations at the second
lowest throw since 1/3 ≤ 2/5, see the definition in Footnote 1. One
shows that theoretically the VaR of rolling two dice is subadditive
below themean. But in this experiment, the VaR happens not to be
subadditive below the mean as −6 > −7. Recall that definition of
VaR in Footnote 1 and the fact that all outcomes are positive, imply
that the VaR is a negative number.

3. Fat-tailed asset returns

Empirical studies have long established that the distribution of
speculative asset returns tend to have fatter tails than the normal
distribution, see e.g Mandelbrot (1963), Fama (1965) and Jansen
and de Vries (1991). Fat-tailed distributions are often defined in
terms of higher than normal kurtosis. However, kurtosis captures
themass of the distribution in the center relative to the tails, which
may be thin. Distributions exhibiting high kurtosis but having
truncated tails, and hence thin tails, are easy to construct.4

An alternative, formal, definition of a fat-tailed distribution is
that the tails are regularly varying at infinity, i.e., the tails have a
Pareto distribution-like power expansion at infinity.

Definition 1. A cumulative distribution function F(x) varies regu-
larly at minus infinity with tail index α > 0 if 5

lim
t→∞

F(−tx)
F(−t)

= x−α
∀x > 0 (1)

and at plus infinity if

lim
t→∞

1 − F(tx)
1 − F(t)

= x−α
∀x > 0.

This implies that a regularly varying distribution has a tail of the
form

F(−x) = x−αL(x), x > 0,

where the constant α > 0 is called the tail index and L is a slowly
varying function, e.g. a logarithm.6 An often used particular class of
these distributions has a tail comparable to the Pareto distribution:

F(−x) = Ax−α
[1 + o(1)], x > 0, for α > 0, (2)

where the parameter A > 0 is known as the scale coefficient.
A regularly varying density implies regularly varying tails for
the distribution as defined in (1). Under a weak extra condition
regarding monotonicity, the converse also holds, i.e. for large x
condition (1) implies

f (−x) ≈ αL(x)x−α−1 x > 0, for α > 0 and A > 0. (3)

4 The issue of kurtosis is discussed e.g. in the example on p. 480 of Campbell et al.
(1997).
5 For an encyclopedic treatment of regular variation, see Bingham et al. (1987) or

Resnick (1987).
6 A function L(x) is slowly varying if L(tx)/L(t) → 1 as t → ∞ for any x > 0.

This means that the density declines at a power rate x−α−1 far to
the left of the center of the distribution, which contrasts with the
much faster than exponentially declining tails of the Gaussian. The
power is outweighed by the explosion of xm in the computation of
moments of order m > α. Thus, moments of order m > α are
infinite and α therefore determines the number of finite moments
and hence the thickness of the tails. Finiteness of the moments is
determined byα, apart from the boundary case ofmoment of order
α, in which case the slowly varying function plays a role.7

For example, the Student-t distributions vary regularly at
infinity, have degrees of freedom equal to the tail index and satisfy
the above approximation. Likewise, the stationary distribution of
the GARCH(1,1) process has regularly varying tails, see de Haan
et al. (1989) and Basrak et al. (2002). Moreover, the non-normal
stable distributions investigated by Fama andMiller (1972, p. 270),
Ibragimov and Walden (2007) and Ibragimov (2009) also exhibit
regularly varying tails at infinity. See also Davis and Mikosch
(1998) and Campbell et al. (1997).

The first moment of most financial assets appears to be finite,
indicating a tail index higher than one, see e.g. Jansen and de Vries
(1991), Embrechts et al. (1996) and Daníelsson and de Vries (1997,
2000). We demonstrate below that for all assets with (jointly)
regularly varying non-degenerate tails, subadditivity holds in the
tail region provided the tail index exceeds one.

An example of assets with such a distribution is the return dis-
tributions of non-life insurance portfolios which are characterized
by tails with α values that hover around 1 (which is one expla-
nation for why most insurance treaties are capped). For example,
weather insurance is plagued by occasional bad weather leading
to heavy damage claims, after many years without any noticeable
storms. But for other applications in finance, a finite mean (when
α > 1) or a finite variance (α > 2), is more common.

4. Subadditivity of VaR in the tail

While the normal distribution with linear dependence delivers
subadditive VaR below the mean, our interest is in the empirically
more relevant fat tailed distributions.We only need to focus on the
lower tail, since the theoretical results apply equally to the upper
tail as one can turn it into the other tail bymultiplying returnswith
minus one, accomplished e.g. in a short sale.

As before, let X1 and X2 be two asset returns, each having a
regularly varying tail with the same tail index α > 0. We consider
the effect of combining the assets into oneportfolio,which requires
studying the tail of the convolution that is determined by the
joint tail behavior of the two assets. The corresponding formal
mathematical definition of jointly regularly varying tails allows X1
and X2 to be dependent:

Definition 2. A random vector (X1, X2) has jointly regularly
varying right tails with tail index α if there is a function a(t) >
0 that is regularly varying at infinity with exponent 1/α and a
nonzero measure µ on (0, ∞)2 \ {0} such that

t P ((X1, X2) ∈ a(t)·) → µ (4)

as t → ∞ vaguely in (0, ∞]
2
\ {0} (see e.g. Resnick (1987)).

The measure µ has a scaling property

µ(cA) = c−αµ(A) (5)

for any constant c > 0 and any Borel set A. The non-degeneracy
assumption in Proposition 1 below means that the measure µ is
not concentrated on e.g. a straight line {ax = by} for some a, b ≥ 0.

7 In the case of a two-sided power law, the sum of the two tails determines
finiteness of the moments (since α could be the same in both cases).
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The following general proposition, which is our main theoret-
ical result, allows for arbitrary dependence between the returns.
If the tail indices of the two assets are different, a slightly weaker
form of subadditivity holds; see the Appendix.

Proposition 1. Suppose that X1 and X2 are two asset returns with
jointly regularly varying non-degenerate tails with tail index α > 1.
Then VaR is subadditive sufficiently deep in the tail region.

Proof. See the Appendix. �

Proposition 1 guarantees that at sufficiently low probability
levels, the VaR of a portfolio position is lower than the sum of
the VaRs of the individual positions, if the return distribution
exhibits fat tails. For example, this applies to a multivariate
Student-t distribution with degrees of freedom larger than 1.
Ibragimov (2009) shows that for models with common shocks
and convolutions of finite mean stable distributions subadditivity
holds, regardless of the value of the loss probability. Ibragimov
(2005, 2009) also shows that subadditivity holds for the class
of finite variance alpha-symmetric distributions with regularly
varying tails, such as the multivariate Student-t distribution.

Remark 1. From the proof to Proposition 1 in theAppendix,we see
that even without the non-degeneracy assumptions and, in partic-
ular, if the two assets have different tail indices, we still have

lim sup
p→0

VaRp(X1 + X2)

VaRp(X1) + VaRp(X2)
≤ 1,

which is a weaker form of subadditivity in the tails.

The following example is well known.

Example 3. Suppose X1 and X2 have independent unit scale Pareto
loss distributions, Pr{X1 < −x} = Pr{X2 < −x} = x−α, x ≥

1. By inversion, VaRp(X1) = VaRp(X2) = p−1/α . Using Feller’s
convolution theorem (Feller, 1971, VIII.8), we have for sufficiently
low p:

p = Pr{X1 + X2 ≤ −VaRp(X1 + X2)} ≈ 2[VaRp(X1 + X2)]
−α.

Hence, if α > 1 then for low p:

VaRp(X1 + X2) −

VaRp(X1) + VaRp(X2)


≈ p−1/α


2

1
α − 2


< 0.

A caveat is that diversification may not work for super fat tails,
i.e. if α < 1. Data falling into this category are characterized by
a large number of very small outcomes inter-dispersed with very
large outcomes. This result was noted by Fama and Miller (1972).
Ibragimov and Walden (2007) and Ibragimov (2009) extend these
results to the VaR risk measure for the class of sum stable
distributions and possibly dependent processes. These issues are
further discussed by Embrechts et al. (2008).

4.1. Affine dependent returns

Proposition 1 establishes that subadditivity is not violated for
fat-tailed data, deep in the tail area, regardless of its dependency
structure.We can illustrate this result by an example of assets with
linear dependence, via a factor structure. Other relevant cases are
discussed in de Vries (2005) for the financial assets and Geluk and
de Vries (2006) for insurance. Garcia et al. (2007) considered the
case of two independent returns.

Consider the standard single factor model, where X1 and X2 are
two assets, which are dependent via a common market factor:

Xi = βi R + εi, i = 1, 2 (6)

where R denotes the risky return of the market portfolio, βi the
constantmarket factor loading and εi the idiosyncratic risk of asset
Xi. The random variables εi and R are independent of each other;
and individual εi’s are independent of each other. Thus, the only
source of cross-sectional dependence between X1 and X2 is the
common market risk.

Since R and εi are independent, we can use Feller (1971)’s
convolution theorem to approximate the tails of X1 and X2,
depending upon the tail behavior of R, ε1 and ε2.We can further use
it to approximate the tail of X1 + X2. To illustrate this, we present
below one particular case, viz., the case where R, ε1 and ε2 have
regularly varying Pareto-like tails with the same tail index α, but
with different scale coefficients A, see (2).8

Corollary 1. Suppose that asset returns X1 and X2 can be modeled by
the single index market model, where R, ε1 and ε2 all have Pareto-like
tails with tail index α > 1, and scale coefficients Ar > 0, A1 > 0 and
A2 > 0 respectively, as in (2). Then the VaR measure is subadditive in
the tail region.

Proof. See the Appendix. �

In general, the single index market model (6) may not describe
the true nature of the dependence between X1 and X2 since εi’smay
not be cross-sectionally independent, even when each of them is
independent from the commonmarket factor R. For example, apart
from the market risk, the assets X1 and X2 may be dependent on
industry specific risk, depicted by the movement of an industry
index I . Moreover, typically the number of factors is larger. Such
industry specific factors may lead to dependence between ε1 and
ε2. We may model cross sectional dependence by generalizing
model (6) by incorporating a sector specific factor I .

Xi = βi R + τi I + εi, i = 1, 2 (7)

where I is the risky industry specific factor and the constant τi
represents the effect of the industry specific risk on the asset Xi.
If Xi has Pareto-like tails with scale coefficient A and tail index α,
then again under the assumption of Proposition 1 for sufficiently
small p:

VaRp(X1 + X2) ≤ VaRp(X1) + VaRp(X2).

To show the full scope of Proposition 1, we now consider a
case where there is zero correlation, but where portfolios may
nevertheless be dependent.

Example 4. Consider two independent random returns X1 and X2,
and the following two portfolios X1 + X2 and X1 − X2. Assume
alternatively that the returns are standard normally distributed, or
Student-t with α > 2 degrees of freedom. It is immediate that
E[(X1 + X2) (X1 − X2)] = 0, and hence the correlation is zero. So
under normality the two portfolios are independent. In the case of
the Student-t , however, the two portfolios are dependent in the
tail area since the extremes line up along the two diagonals.

The implication for the VaR of the portfolio is as follows. For the
normal case, below the mean the VaR is known to be subadditive.
For the non-linear dependent case with the Student-t risk drivers,
one can calculate the VaR sufficiently deep into the tail area by
using Feller’s convolution theorem. Since for large s

p = Pr (X1 + X2 > s) = Pr (X1 − X2 > s)
≃ 2s−α,

upon inversion, the univariate VaR’s are s ≃ (2/p)1/α .

8 The result in the following Corollary is e.g. shown in the first version of this
paper, Daníelsson et al. (2005). Ibragimov (2005, 2009) and Ibragimov andWalden
(2007) considered the case βi = 1 and when R and ϵi are part of the alpha-
symmetric distributions.
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The VaR of the combination of the portfolios is obtained from

p = Pr (X1 + X2 + X1 − X2 > s) = Pr (2X1 > s) ≃ 2αs−α

upon inversion s ≃ 2 (1/p)1/α . It follows immediately that this VaR
is smaller than the sum of the individual VaRs 2 (2/p)1/α .

In a stylized way, the first portfolio could be interpreted as
belonging to a bank that is lending long in two sectors, while the
other portfolio might be from a hedge fund, short in one sector,
long in the other.

5. Monte Carlo study and empirical results

The theoretical subadditivity property established in Proposi-
tion 1 only holds in the tail region, and conceivablymight only hold
formore extreme probabilities than those encountered in practical
applications, or in very large data sets.

To investigate this issue, we conducted Monte Carlo experi-
ments with two asset returns X1 and X2, assumed to follow a
Student-t distribution with ν degrees of freedom; recall that the
tail index α = ν for the t distribution. We consider several differ-
ent values for ν, i.e. 1–4.

We constructed linearly dependent random variables X1 and
X2 by taking linear combinations of two independent Student-
t variates using the Choleski decomposition of the correlation

matrix, i.e. X2 = ρX1 +


1 − ρ2


X̃2 where X̃2 is independent

from X1.9 The data are bivariate regularly varying by construction.
But the linear combination of Student-t variates behind the
dependent X1 and X2 implies that the data are not bivariate
Student-t , as the convolution of two Student variates preserves the
fat tail property, but does not conform to themultivariate Student-
t distribution.

We chose the sample sizes, N , to represent both very large
samples, expected to give asymptotic results, as well as a smaller
samples representing typical applications. The largest sample size
is set to 100,000 while the smaller sample sizes are 1000 and
300. In each case, we simulate two asset returns and form an
equally-weighted portfolio of the returns to estimate the VaR. The
probability levels, p, are chosen to capture those typically used in
practice, i.e., 5% and 1%, as well as some much smaller probability
levels for the larger samples to explore the asymptotic properties.
These lower probability levels are representative for levels that
are used in stress tests and worst case analysis. In the tables the
probability levels are indicated by p.

5.1. VaR subadditivity violations

Comparing Tables 1 through 3 for probability levels of 1% and
5%, we observe that the frequency of VaR subadditivity violations
decreases in the sample size when ν > 1.

Subadditivity fails most frequently when ν = 1, and less so
when the degrees of freedom increase. Our simulation results for
ν = 1 are in line with Fama and Miller (1972), Ibragimov and
Walden (2007) and Ibragimov (2009). When ν = 1, we are at
the border between the situation where diversification is counter-
productive and productive, since when ν < 1, diversification in-
creases risk.

Reading across the rows in the Tables, VaR subadditivity
violations decrease as the probability levels are increased if ν > 1.
In some cases the magnitudes of the VaR subadditivity violations

9 In a strict sense, the terminology of covariancematrix is not appropriate for the
case of α ≤ 2, since then the second moment does not exist. However, one can still
create linear combinations and dependency as we do here.

Table 1
Number of subadditivity violations from a Student-t with HS estimation of VaR.
N = 300. Number of simulations is 10,000,000.

ν ρ VaR probabilities p
0.01 0.02 0.05

1 0.0 2,873,140 3,724,601 4,265,379
1 0.5 3,067,383 3,978,156 4,442,592

2 0.0 594,762 346,238 104,406
2 0.5 1,426,493 1,366,805 974,471

3 0.0 147,372 40,576 4,131
3 0.5 783,880 598,916 323,415

4 0.0 50,053 8,499 413
4 0.5 533,671 354,449 162,767

The columns are degrees of freedom of the Student-t , ν, the correlation coefficient
ρ and the number of VaR subadditivity violations corresponding to various
probability levels p (1%–5%).

Table 2
Number of subadditivity violations from a Student-t with HS estimation of VaR.
N = 1000. Number of simulations is 10,000,000.

ν ρ VaR probabilities p
0.003 0.005 0.01 0.05

1 0.0 2,860,556 3,541,288 4,048,271 4,610,815
1 0.5 3,044,504 3,798,688 4,278,082 4,707,254

2 0.0 530,151 325,367 91,850 246
2 0.5 1,294,552 1,241,907 842,265 131,120

3 0.0 100,874 27,688 1,599 0
3 0.5 594,967 439,985 181,330 5,926

4 0.0 24,332 3,427 60 0
4 0.5 337,345 206,357 59,990 753

The columns are degrees of freedom of the Student-t , ν, the correlation coefficient
ρ and the number of VaR subadditivity violations corresponding to various
probability levels p.

Table 3
Number of subadditivity violations from a Student-t with HS estimation of VaR.
N = 10,000, Number of simulations is 10,000,000.

ν ρ VaR probabilities p
0.0003 0.0005 0.001 0.01 0.05

1 0.0 2,857,166 3,538,949 4,049,058 4,717,315 4,877,893
1 0.5 3,036,434 3,793,203 4,275,794 4,793,464 4,909,396

2 0.0 499,603 284,187 60,018 0 0
2 0.5 1,214,032 1,144,662 698,389 453 0

3 0.0 76,748 15,161 284 0 0
3 0.5 457,543 302,667 80,975 0 0

4 0.0 12,970 908 3 0 0
4 0.5 190,711 91,285 11,205 0 0

The columns are degrees of freedom of the Student-t , ν, the correlation coefficient
ρ and the number of VaR subadditivity violations corresponding to various
probability levels p.

is nevertheless substantial. Fig. 1 shows the histogram of the
magnitudes, for ν = 2, N = 300, 100,000 simulations and p = 1%.

At first glance, these results may run counter to Proposition 1.
The explanation for this is the finite sample properties of the
data, as explained by the following experiment. Let ν = 3 with
independent variables and N = 300. We record the number
of violations at all probability levels 2/N , 3/N , 4/N , until 1/2.
The results are shown in Fig. 2. Note the J-shaped pattern.10 The
Student-t distribution is subadditive below the mean in the case

10 For the normal distribution one observes the same J-shape at a lower scale; the
explanation of this phenomenon is analogous to the case of the Student-t .
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(a) All observations. (b) Observations less than 10.

Fig. 1. Magnitude of VaR violations.

Fig. 2. Number of VaR subadditivity violations for a Student-t(3). N = 300.

Fig. 3. Empirical tail of Student-t(3). N = 1000, and EVT fit.

of independent returns. Thus, at p = 0.5, we expect a violation in
50% of the cases, since at that point we expect the VaR for either
X1 or X2 to have a switched sign. Moving to the left, away from the
mean into the tail region, thus lowers the number of violations, as
seen in Fig. 2.

Deep into the tail area, however, at p = 0.1, the number
of violations starts to increase again, since estimation of VaR
by historical simulation (HS) is prone to deliver violations of
subadditivity in some cases, especially for increasingly extreme
losses and small sample sizes. The reason is that as p decreases,
the VaR is estimated by a quantile increasingly close to the
minimum, where the empirical distribution becomes very coarse
in comparison to the true distribution so far out in the tail.

In other words, the tail is sampled imprecisely in this area
because of what we call the tail coarseness problem. When only
using a handful of observations in the estimation of HS, i.e. where
the estimate is equal to one of the most extreme quantiles, the
uncertainty about the location of a specific quantile is considerable.
This implies that one could easily obtain draws whereby a
particular quantile of a relativity fat distribution is less extreme
than the same quantile from a thinner distribution. This can imply
an upset of subadditivity. See Example 2 above for a demonstration
of this result.

Figs. 3 and 4 further illustrate this, with the latter showing the
99% quantiles of HS estimation of VaR as we vary the threshold
from 2 to 20 in a sample of size 1000.

Fig. 4. 1% and 99% empirical confidence bounds for VaR. VaR for a Student-t(3),
estimated with HS and EVT for sample size N = 5000, and probabilities, m =

2/N, . . . , 10/N . The EVT threshold, m, is 200. The solid line is the true quantile,
and the dotted/dashed lines are 1% and 99% empirical quantile from repeating the
estimation with 5000 random samples.

5.2. VaR from estimating the tail

In this sectionwe offer a remedy for the tail coarseness problem
identified above, suggesting an alternative estimator for the VaR.
We propose to use the quantile estimator of Daníelsson and de
Vries (2000) which is based on extreme value theory (EVT).

For fat-failed distributions, the tail asymptotically follows a
power law, i.e. the Pareto distribution,
F(x) = 1 − Ax−α.

Given a sample of size n and m < n sufficiently small, one can
estimate α by the Hill estimator

1
α̂(m)

=
1
m

m
i=1

log
X(i)

X(m+1)
(8)

whereX(i) indicates order statistics. The quasimaximum likelihood
VaR estimator is

VaR(p) = X(m+1)


m/n
p

 1/α(m)

. (9)

The two estimators, 8 and 9, are asymptotically normally dis-
tributed, see de Haan and Ferreira (2006, Chapter 2).

Effectively, EVT estimation is based on fitting a smooth function
(Pareto) to the tails. Because this function is estimated by using all
observations in the tail, the estimates are less sensitive to the tail
coarseness problem. This power law behavior can be reliably es-
timated by using more data than just the most extreme observa-
tions.11 Subsequently, one joins the parametrically estimated tail

11 In fact, for any sequence m/n → 0,m → ∞, this approach is better
than relying on the empirical distribution. The latter approach only guarantees
asymptotic normality if m/n → c ≥ 0, see de Haan and Ferreira (2006, Chapters 3
and 4).
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Table 4
Number of subadditivity violations for a simulation from a Student-t(2) with EVT
and HS estimation. N = 1000. Number of simulations is 100,000.

m p Violations
ρ = 0 ρ = 0.5
EVT HS EVT HS

200 0.01 32 926 3692 8,398
100 0.01 4 926 1125 8,398
50 0.01 0 926 583 8,398

200 0.003 414 5316 8559 12,897
100 0.003 147 5316 5722 12,897
50 0.003 262 5316 6007 12,897
10 0.003 1071 5316 8059 12,897

The first two columns are the EVT thresholdm (i.e. number of observations in the tail
to estimate the tail index) and the VaR probability p. The last four columns record
the number of the violations for both EVT and HS where the data was generated
with two correlation coefficients, ρ = 0 and ρ = 0.5.

Table 5
Number of subadditivity violations for a simulation from a Student-t(2) with EVT
and HS estimation. N = 10,000. Number of simulations is 100,000.

m p Violations
ρ = 0 ρ = 0.5
EVT HS EVT HS

1000 0.01 0 0 0 6
500 0.01 0 0 0 6
200 0.01 0 0 0 6

1000 0.001 0 541 6 7,002
500 0.001 0 541 15 7,002
200 0.001 0 541 127 7,002
100 0.001 0 541 213 7,002
50 0.001 0 541 242 7,002

1000 0.0003 0 4978 46 12,087
500 0.0003 0 4978 179 12,087
200 0.0003 2 4978 1338 12,087
100 0.0003 27 4978 3246 12,087
50 0.0003 151 4978 5068 12,087

The first two columns are the EVT thresholdm (i.e. number of observations in the tail
to estimate the tail index) and the VaR probability p. The last four columns record
the number of the violations for both EVT and HS where the data was generated
with two correlation coefficients, ρ = 0 and ρ = 0.5.

to the empirical distribution in the region where there are suffi-
cient observations. Refer to Fig. 3 for how EVT provides an estimate
of a smooth tail.

We compare the number of VaR subadditivity violations
obtained by using HS with the EVT method for N = 1000 and
N = 10,000 in Tables 4 and 5. We vary the probability levels as
in the previous tables, but focus on the ν = 2 case. Finally, we
use several thresholds for the EVT estimation, i.e.m from (8). Note
that the number of subadditivity violations for the HS from Table 4
are comparable to the results from Table 2 (for example there are
12,897 violations with ρ = 0.5 and p = 0.003 in Table 4, while
with a hundred times as many simulations in Table 2 there are
1,294,552 violations).

EVT reduces the number of violations considerably. For exam-
ple, for N = 1000, p = 0.01, and m = 100, HS has 926 sub-
additivity violations, out of 100,000 simulations, whilst EVT has
only 4. Similar results are obtained in other cases. In the worst
case we get about 30% reduction in violations, and in the best
cases 100%. This is further supported in Fig. 3 which presents the
empirical upper tail and the EVT estimated tail, and Fig. 4 which
shows the empirical 99% confidence bounds for the VaR estimates
from HS and EVT. The EVT bounds are much tighter than the HS
bounds.

Table 6
Number of subadditivity violations for S&P-500 stocks.

m p (%) EVT HS
Violations ᾱ ρ̄ (%) Violations ρ̄ (%)

50 1.0 0 0
50 0.5 0 12 57.3
50 0.1 89 2.41 46.8 410 30.4

125 2.0 0 0
125 1.0 0 0
125 0.5 0 12 57.3
125 0.1 59 2.14 50.0 410 30.4

Daily returns from April 31, 1991 to March 31, 2011, n = 5000. VaR only estimated
for stock pairs where 5000 observations were available and all dates for both stocks
correspond. This results in 49,141 pairs of stocks. The average tail index for the the
smaller and higher threshold are ᾱ(50) = 3.27 and ᾱ(125) = 2.77, respectively,
while the average correlation is ρ̄ = 20.6%. The first two columns are the EVT
threshold indicated by m (i.e. number of observations in the tail to estimate tail
index) and the VaR probability at p. This is followed by two pairs of three columns,
first pair for EVT, the second for HS.Within each pair the first column is the number
of subadditivity violations, the second (ᾱ) is the average tail index and the the last
(ρ̄) the average correlations, for the subset in which subadditivity is violated. Note
that the HS results are necessarily the same for the two cases ofm.

5.3. Empirical study

We finally investigate the frequency of subadditivity violations
for the stock returns making up the S&P-500 index. If we could
use all 500 stocks we would get 124,750 pairs of stock returns for
the analysis. The sample size is 5000, and since not all stocks in
the S&P-500 have 5000 observations (about 20 years), some had
to be removed from the sample. Furthermore, we eliminated from
the sample all stock pairs where not all the dates did match. This
results in 49,141 stock pairs.

The results are reported in Table 6. We apply both the HS
and EVT methods, use two EVT thresholds, 50 and 125 (1% and
2.5%), and employ a range of probabilities for VaR. The average
correlation across all the stock pairs is 20.6%, and the average tail
index for the smaller threshold is 3.27,whilst it is 2.77 for the larger
threshold.

We do not find any subadditivity violations for non-extreme
VaR probabilities (1%) but aswemove into the tail, the frequency of
violations increases. HS ismuchmore likely to violate subadditivity
than EVT, consistent with the Monte Carlo simulations, but still a
few violations are found for EVT.

We also report the average tail index and correlations in cases
where we observe subadditivity violations. The correlations are
much higher than for the entire sample (the lowest, 30.4%, for HS
where p = 0.1% and highest for EVT where p = 0.1% compared
to 20.6% for all stock pairs) and the average tail indices are always
lower than for the full sample. The number of violations, given the
number of observations, is in line with the numbers found in the
simulations, e.g. those reported in Table 5.

6. Conclusion

We first show that VaR is subadditive in the relevant tail region
when asset returns aremultivariate regularly varying, and possibly
dependent. Second, Monte Carlo simulations show that coarseness
of the empirical distribution can upset the subadditivity of VaR
in practice. The final contribution of the paper is that the use of
semi-parametric extreme value techniques, dramatically reduces
the frequency of subadditivity failures in practice. This approach
exploits the fact that the tail of the distribution eventually becomes
smooth and can only take on a specific parametric form.

Appendix

Proposition 1 deals with left tails, but for notational simplicity
the argument below treats right tails.
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Proof of Proposition 1. For p > 0 small,

VaRp(X1) ∼ (µ {(1, ∞) × (0, ∞)})1/α a

1
p


,

VaRp(X2) ∼ (µ {(0, ∞) × (1, ∞)})1/α a

1
p


and

VaRp(X1 + X2) ∼ (µ {x ≥ 0, y ≥ 0 : x + y > 1})1/α a

1
p


as p → 0.

The scaling property (5) means that there is a finite measure η
on B1 = {x ≥ 0, y ≥ 0 : x + y = 1} such that

µ(A) =


B1


∞

0
1((u, v)r ∈ A) αr−(1+α) dr η(du, dv). (10)

Then

µ {(1, ∞) × (0, ∞)} =


B1

uα η(du, dv),

µ {(0, ∞) × (1, ∞)} =


B1

vα η(du, dv),

and

µ {x ≥ 0, y ≥ 0 : x + y > 1} =


B1

(u + v)α η(du, dv).

Since by the triangular inequality in Lα(η)
B1

(u + v)α η(du, dv)

1/α

<


B1

(u)α η(du, dv)

1/α

+


B1

(v)α η(du, dv)

1/α

,

with the strict inequality under the non-degeneracy assumption,
we conclude that

VaRp(X1 + X2) − VaRp(X1) − VaRp(X2) < 0

holds for all p > 0 small enough. �

Proof of Corollary 1. Results follow from the previous proof in the
general case. But we also provide a constructive proof here.

Suppose that R has a regularly varying tail with index α and
εi, i = 1, 2 has a regularly varying tail with index α. Further,
suppose that R has a symmetric distribution. Thus, to a first order
approximation,

Pr{R ≤ −x} ≈ Ar x−α, Pr{R ≥ x} ≈ Ar x−α.

If βi > 0 then

Pr{βiR ≤ −x} = Pr

R ≤ −

x
βi


≈ Arβ

α
i x

−α.

If βi < 0 then

Pr{βiR ≤ −x} = Pr{−|βi|R ≤ −x} = Pr{|βi|R ≥ x} ≈ Ar |βi|
α x−α.

Thus

Pr{βiR ≤ −x} ≈ Ar |βi|
α x−α, βi ∈ R.

For the individual assets ε1 and ε2

Pr{εi ≤ −x} ≈ Ai x−α, i = 1, 2.

By Feller’s convolution theorem

Pr{Xi ≤ −x} ≈ |βi|
αAr x−α

+ Aix−α.

Thus

p ≈ x−α(Ai + |βi|
αAr),

and upon inversion

x ≈ p−
1
α (Ai + |βi|

αAr)
1
α .

Similarly

Pr{X1 + X2 ≤ −x} ≈ |β1 + β2|
αAr x−α

+ A1x−α
+ A2x−α.

Thus,

VaRp(X1) ≈ p−
1
α (A1 + |β1|

αAr)
1
α ,

VaRp(X2) ≈ p−
1
α (A2 + |β2|

αAr)
1
α ,

and

VaRp(X1 + X2) ≈ p−
1
α


(A1 + A2 + |β1 + β2|

αAr)
1
α


.

To establish the sub-additivity we proceed as follows:

VaRp(X1 + X2) ≈ p−
1
α


(A1 + A2 + |β1 + β2|

αAr)
1
α


≤ p−

1
α [Ar (|β1| + |β2|)

α
+ (A1 + A2)]

1
α

= p−
1
α


Ar (|β1| + |β2|)

α
+


(A1 + A2)

1
α

α 1
α

≤ p−
1
α


Ar (|β1| + |β2|)

α
+


A

1
α
1 + A

1
α
2

α 1
α

= p−
1
α


A

1
α
r |β1| + A

1
α
r |β2|

α

+


A

1
α
1 + A

1
α
2

α 1
α

≤ p−
1
α


A

1
α
r |β1|

α

+


A

1
α
1

α 1
α

+


A

1
α
r |β2|

α

+


A

1
α
2

α 1
α


,

= p−
1
α (Ar |β1|

α
+ A1)

1
α + p

1
α (Ar |β2|

α
+ A2)

1
α

= VaRp(X1) + VaRp(X2)

where in the second step we use the triangular inequality and in
the fourth step the Cα inequality for α > 1. The sixth step relies
on Minkowski’s inequality for α > 1. Thus, for α > 1, VaR is sub-
additive in the tail region. �
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