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a b s t r a c t

Suppose the tails of the noise distribution in a regression exhibit power law behavior. Then the distribu-
tion of the OLS regression estimator inherits this tail behavior. This is relevant for regressions involving
financial data. We derive explicit finite sample expressions for the tail probabilities of the distribution of
the OLS estimator. These are useful for inference. Simulations for medium sized samples reveal consider-
able deviations of the coefficient estimates from their true values, in line with our theoretical formulas.
The formulas provide a benchmark for judging the observed highly variable cross country estimates of
the expectations coefficient in yield curve regressions.
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1. Motivation

Regression coefficients based on financial data often vary
considerably across different samples. This observation pertains
to finance models like the CAPM beta regression, the forward
premium equation and the yield curve regression. In economics,
macro models like the monetary model of the foreign exchange
rate also yield a wide spectrum of regression coefficients.

The uncertainty in CAPM regressionswas reviewed in Campbell
et al. (1997, Chapter 5) and Cochrane (2001, Chapter 15). Lettau
and Ludvigson (2001) explicitly model the time variation in beta.
Hodrick (1987) and Lewis (1995) report wildly different estimates
for the Fisher coefficient in forward premium regressions.
Moreover, typical estimates of the expectation coefficient in yield
curve regressions reported by Fama (1976), Mankiw and Miron
(1986), and Campbell and Shiller (1991) show substantial variation
over time and appear to be downward biased; Campbell et al.
(1997, Chapter 10.2) provide a lucid review. The coefficient of
the relative money supply in the regression of the exchange
rate on the variables of the monetary model of the foreign
exchange rate varies considerably around its theoretical unitary
value; see for example Frenkel (1993, Chapter 4). In monetary
economics parameter uncertainty is sometimes explicitly taken
into account when it comes to policy decisions; see Brainard
(1967) and, more recently, Sack (2000). In a random coefficient
model, see Feige and Swamy (1974), the (regression) coefficients
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themselves are subject to randomness and therefore fluctuate
about some fixed values. Estimation of the random coefficient
models is reviewed in Chow (1984). Moreover, strategic decisions
and rapidly changing business environments imply that one often
works with a relatively short data window. Similarly, as soon as
some macro variables are part of the regression, one is compelled
to use low frequency data and hence a small or medium sized
sample.

A possible reason for the considerable variation in estimated
regression coefficients across different medium sized samples is
the heavy tailed nature of the innovations distribution. It is an
acknowledged empirical fact that many financial variables are
much better modeled by distributions that have tails thicker than
the normal distribution; see e.g. Embrechts et al. (1997, Chapter
6), Campbell et al. (1997), or Mikosch (2003) and the references
therein. In small and medium sized samples the central limit
theory (CLT) based standard

√
n-rates of convergence for the OLS

parameter estimators can be a poor guide to the parameter range
that may occur. But small sample results for the distribution of
regression estimators are rare and exact results are difficult to
obtain.

In this paper we derive explicit expressions for the tail of the
distribution of the regression estimators in finite samples for the
case that the noise distribution exhibits heavy tails.1 Consider the
simple regression model:

Yt = βXt + ϕt .

1 In large samples, given that the innovations have finite variance, CLT based
results apply.
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Suppose that the i.i.d. additive noise ϕt has a distribution with
Pareto-like tails, i.e. P(|ϕ| > s) ≃ cs−α for high quantiles s, some
constant c > 0 and tail index α > 0. For example, the Student-
t distribution with α degrees of freedom fits this assumption. The
ordinary least squares estimator of β reads

β =

n
t=1

XtYt

n
t=1

X2
t

= β + ρn, where ρn :=

n
t=1
ϕtXt

n
t=1

X2
t

.

We show that under some mild conditions, for example if the Xt
are i.i.d. with a standard uniform distribution and if the ϕt follow a
Student-t distribution with α degrees of freedom, then

P(ρn > x) = P(ρn ≤ −x) ∼ n E

 X1
n

s=1
X2
s


α

P(ϕ > x).

Note that this is a fixed finite sample size n cum large deviation
x result. This relation shows that for fixed n and large x there
is a strong deviation of the tail probability of ρn from a normal
based tail which, for fixed x and large n, would be prescribed by
the CLT. In particular, the resulting Pareto-like tails of ρn yield a
possible explanation for the empirical observation that regression
estimates often fluctuate wildly around their theoretical values.

The above Pareto-like tail probabilities can be used for state-
ments about very high quantiles of ρn. Suppose q > x is an even
higher quantile, possibly at the border or even outside the range of
the data. Then

q ≃ x

P (ρn > x)
P (ρn > q)

1/α

.

Below we demonstrate that in small and medium sized samples
with heavy tail distributed innovations, this approximation is con-
siderably better than the normal (CLT) based approach. It can be
used to gauge the probability of observing regression coefficients
of unusual size.

The results hinge on relatively weak assumptions regarding the
stochastic nature of the explanatory variable. For the linear model
abovewe require that the joint density of the explanatory variables
is bounded in some neighborhood of the origin. A restriction is the
condition that the regressor be exogenous; but the regressor is not
assumed to be fixed. In addition to the case of additive noise ϕ,
we also investigate the case of random coefficients β , i.e. the case
with multiplicative noise. Moreover, we allow for the possibility
that the multiplicative noise component is correlated with the
additive noise term. In this sense there can be correlation between
the economic explanatory part and the additive noise structure.
Both the noise and the regressor are allowed to be time dependent.
The time dependency has an extra effect on the dispersion of the
regression coefficients.

The paper does not propose alternative regression procedures
such as the estimator studied in Blattberg and Sargent (1971) or the
Least Absolute Deviations estimator, Rank estimators investigated
in this issue by Hallin et al. (in this issue), tail trimming for
GMM estimation studied by Hill and Renault (2010), the partially
adaptivemethods proposed in Butler et al. (1990), or themaximum
likelihood procedure for the case of residuals that follow infinite
variance stable distributions as considered in Nolan and Revah (in
this issue); nor dowe venture into the issue ofmodel identification
of infinite variance autoregressive processes as investigated in
Andrews and Davis (in this issue). The purpose of our paper is
different.We investigate the shape of the distribution of regression
coefficientswhen the standardOLS procedure is applied in the case
that the innovations are heavy tailed distributed. Thus while the

alternative estimators are meant to overcome the deficiencies of
the OLS procedure in the presence of heavy tails, we quantitatively
describe the properties of the OLS procedure in this situation.
The OLS method is very widely applied, including the case of
financial data which are known to exhibit heavy tails. Therefore
it is of interest to understand the OLS results under non-standard
conditions.

The theoretical results are first illustrated by means of a sim-
ulation experiment. The Monte Carlo study demonstrates that in
medium sized samples the estimated coefficients can deviate con-
siderably from their true values. The expressions for the tail proba-
bilities are shown towork as anticipated and their use for inference
is demonstrated. Subsequently, we investigate the relevance of the
theory for the wide dispersion of the expectation hypothesis
coefficients in yield curve regressions.

2. The model

We study the regression model:

Yt = (β + εt)Xt + ϕt , (1)

where (εt , ϕt) is a strictly stationary noise sequence of 2-dimen-
sional random vectors, and (Xt) is a sequence of explanatory
variables, independent of the noise. In what follows, we write ϕ,
ε, etc., for generic elements of the strictly stationary sequences
(ϕt), (εt), etc. The coefficient β is a fixed parameter to be
estimated by regression. The model (1) comprises a large variety
of different economic models since it allows for both additive and
multiplicative uncertainty. If the noises εt and ϕt have zero mean,
then, conditionally on the information at time t − 1, the model (1)
captures the structure of many of the rational expectations finance
models such as the CAPM.

In what follows, we assume that the right tail of the marginal
distributions Fε(x) and Fϕ(x) of ε and ϕ, respectively, is regularly
varying with index α > 0. This means that the limits

lim
x→∞

1 − F(xs)
1 − F(x)

= s−α for all s > 0 (2)

exist for F ∈ {Fε, Fϕ}. Regular variation entails that (α + δ)-th
moments of F are infinite for δ > 0, supporting the intuition
on the notion of a heavy tailed distribution. Some prominent
members of the class of distributions with regularly varying tails
are the Student-t , F-, Fréchet, infinite variance stable and Pareto
distributions. First order approximations to the tails of these
distribution functions F are comparable to the tail c x−α of a Pareto
distribution for some c, α > 0, i.e.,

lim
x→∞

1 − F(x)
c x−α

= 1.

The power like decay in the right tail area implies the lack of
moments higher than α. There are other distributions which have
fatter tails than the normal distribution, such as the exponential or
lognormal distributions. But these distributions possess all power
moments. These are less suitable for capturing the very large
positive and highly negative values observed in financial data sets.

Independent positive random variables A1, . . . , An with regu-
larly varying right tails (possibly with different indices) satisfy a
well known additivity property of their convolutions; see for ex-
ample Feller (1971). This means that

lim
x→∞

n
i=1

P(Ai > x)

P


n
i=1

Ai > x
 = 1. (3)

This is a useful fact when it comes to evaluating the distributional
tail of (weighted) sums of random variables with regularly
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varying tails. The ordinary least squares (OLS) estimator of β is
comprised of such sums, but also involves products and ratios of
random variables. In particular, the OLS estimatorβ of β in model
(1) is

β =

n
t=1

XtYt

n
t=1

X2
t

= β + ρn,ε + ρn,ϕ, (4)

and involves the terms

ρn,ε :=

n
t=1
εtX2

t

n
t=1

X2
t

and ρn,ϕ :=

n
t=1
ϕtXt

n
t=1

X2
t

. (5)

Thus, in the case of fixed regressors Xt and with noise (εt , ϕt)
whose components have distributions with regularly varying
tails, one can rely on the additivity property (3) to deduce the
tail probabilities of the β distribution. But if the regressors are
stochastic, we face a more complicated problem for which we
derive new results.

This paper investigates the finite sample variability of the re-
gression coefficient estimator in models with additive noise and
random coefficients when the noise comes from a heavy tailed dis-
tribution. In Section 3 we derive the finite sample tail properties of
the distribution of the OLS estimator of β in model (1) when the
noise has a distribution with regularly varying tails; see (2). The
simulation study in Section 4 conveys the relevance of the theory.
Section 5 applies the theory to the distribution of the expectations
coefficient in yield curve estimation. Some proofs are relegated to
the Appendix.

3. Theory

In this section we derive the finite sample tail properties of
the distribution of the OLS regression coefficient estimator in the
model (1) when the noise distribution has regularly varying tails.
To this end we first recall in Section 3.1.1 the definitions of reg-
ular and slow variation as well as the basic scaling property for
convolutions of random variables with regularly varying distribu-
tions. Subsequently, we obtain the regular variation properties for
inner products of those vectors of random variables that appear
in the OLS estimator of β . The joint distribution of these inner
products is multivariate regularly varying. In Section 3.1.2 we give
conditions for the finiteness of moments of quotients of random
variables. Finally, we derive the asymptotic tail behavior of the
distribution of the OLS estimator of β by combining the previous
results. We present the main results on the finite sample tail be-
havior ofβ for i.i.d. regularly varying noise (Section 3.2.1), for reg-
ularly varying linearly dependent noise (Section 3.2.2) and give
some comments on the case of general regularly varying noise
(Section 3.2.3).

3.1. Preliminaries

3.1.1. Regular variation
A positive measurable function L on [0,∞) is said to be slowly

varying if

lim
x→∞

L(cx)
L(x)

= 1 for all c > 0.

The function g(x) = xαL(x) for some α ∈ R is then said to be
regularly varying with index α. We say that the random variable X
and its distribution F (we use the same symbol F for its distribution

function) are regularly varying with (tail) index α ≥ 0 if there exist
p, q ≥ 0 with p + q = 1 and a slowly varying function L such that

F(−x) = q x−α L(x) (1 + o(1)) and

F(x) := 1 − F(x) = p x−α L(x) (1 + o(1)), x → ∞.
(6)

Condition (6) is usually referred to as a tail balance condition. For
an encyclopedic treatment of regular variation, see Bingham et al.
(1987).

In what follows, a(x) ∼ b(x) for positive functions a and b
means that a(x)/b(x) → 1, usually as x → ∞. We start with an
auxiliary result which is a slight extension of Lemma 2.1 in Davis
and Resnick (1996) where this result was proved for non-negative
random variables. The proof in the general case is analogous and
therefore omitted.

Lemma 3.1. Let G be a distribution function concentrated on (0,∞)
satisfying (6). Assume Z1, . . . , Zn are random variables such that

lim
x→∞

P(Zi > x)

G(x)
= c+

i and

lim
x→∞

P(Zi ≤ −x)

G(x)
= c−

i , i = 1, . . . , n,
(7)

for some non-negative numbers c±

i and

lim
x→∞

P(|Zi| > x, |Zj| > x)

G(x)
= 0, i ≠ j.

Then

lim
x→∞

P(Z1 + · · · + Zn > x)

G(x)
= c+

1 + · · · + c+

n

and

lim
x→∞

P(Z1 + · · · + Zn ≤ −x)

G(x)
= c−

1 + · · · + c−

n .

The following result is a consequence of this lemma.

Lemma 3.2. Suppose Zi are regularly varying random variables with
tail index αi > 0, i = 1, . . . , n. Assume that one of the following
conditions holds.

1. The Zi’s are independent and satisfy (7) with G(x) = P(|Z1| > x),
x > 0.

2. The Zi’s are non-negative and independent.
3. Z1 and Z2 are regularly varying with indices 0 < α1 < α2

and the parameters p1, q1 in the tail balance condition (6) for the
distribution of Z1 are positive.

Then under (1) or (2) the relations

P(Z1 + · · · + Zn > x) ∼ P(Z1 > x)+ · · · + P(Zn > x),
P(Z1 + · · · + Zn ≤ −x) ∼ P(Z1 ≤ −x)+ · · · + P(Zn ≤ −x)

hold as x → ∞. If condition (3) applies, as x → ∞,

P(Z1 + Z2 > x) ∼ P(Z1 > x) and
P(Z1 + Z2 ≤ −x) ∼ P(Z1 ≤ −x).

The proof is given in the Appendix.
Recall the definition of a regularly varying randomvectorXwith

values in Rd; see for example Haan et al. (1977), Resnick (1986,
1987). In what follows, Sd−1 denotes the unit sphere in Rd with
respect to a (given) norm | · | and

v
→ refers to vague convergence on

the Borel σ -field of Sd−1; see Resnick (1986, 1987) for details.
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Definition 3.3. The random vector X with values in Rd and its
distribution are said to be regularly varyingwith indexα and spectral
measure PΘ if there exists a random vector Θ with values in Sd−1

and distribution PΘ such that the following limit exists for all
t > 0:

P(|X| > tx,X/|X| ∈ ·)

P(|X| > x)
v

→ t−α PΘ(·), x → ∞. (8)

The vague convergence in (8) means that
P (|X| > tx,X/ |X| ∈ S)

P(|X| > x)
→ t−α PΘ(S),

for all Borel sets S ⊂ Sd−1 such that PΘ(∂(S)) = 0, where ∂(S)
denotes the boundary of S. Alternatively, (8) is equivalent to the
totality of the relations
P(X ∈ x A)
P(|X| > x)

→ µ(A).

Here µ is a non-null measure on the Borel σ -field of Rd
\ {0} with

property µ(tA) = t−αµ(A), t > 0, for any Borel set A ⊂ Rd
\ {0},

bounded away from zero and such that µ(∂(A)) = 0.
We have the following result.

Lemma 3.4. Assume that X = (X1, . . . , Xd)
′ is regularly varying

in Rd with index α > 0 and is independent of the random vector
Y = (Y1, . . . , Yd)

′ which satisfies E|Y|
α+ϵ < ∞ for some ϵ > 0.

Then the scalar product Z = X′Y is regularly varying with index α.
Moreover, if X has independent components, then as x → ∞,

P(Z > x) ∼ P(|X| > x)

×


d

i=1

c+

i E[Y αi I{Yi>0}] +

d
i=1

c−

i E[|Yi|
α I{Yi<0}]


,

P(Z ≤ −x) ∼ P(|X| > x)

×


d

i=1

c−

i E[Y αi I{Yi>0}] +

d
i=1

c+

i E[|Yi|
α I{Yi<0}]


,

(9)

where

c+

i = lim
x→∞

P(Xi > x)
P(|X| > x)

and c−

i = lim
x→∞

P(Xi ≤ −x)
P(|X| > x)

.

The proof is given in the Appendix.

Remark 3.5. To give some intuition on Lemma 3.4, consider the
case d = 1, i.e., Z = X1Y1, and assume for simplicity that X1 and Y1
are positive random variables. Then the lemma says that

P(X1Y1 > x) ∼ EY α1 P(X1 > x), x → ∞. (10)

The latter relation is easily seen if one further specifies that P(X1 >
x) = cx−α , x ≥ c1/α . Then a conditioning argument immediately
yields for large x,

P(Z > x) = E[P(X1Y1 > x | Y1)]

=

 c−1/αx

0
P(X1 > x/y) dP(Y1 ≤ y)+ P(Y1 > c−1/αx)

=

 c−1/αx

0
cx−α yα dP(Y1 ≤ y)+ P(Y1 > c−1/αx)

= P(X1 > x)
 c−1/αx

0
yα dP(Y1 ≤ y)+ o(P(X1 > x))

= P(X1 > x) EY α1 (1 + o(1)).

Relation (10) is usually referred to as Breiman’s result; see Breiman
(1965). A generalization to matrix-valued Y and vectors X can be
found in Basrak et al. (2002).

3.1.2. Finiteness of moments
In this section we give conditions under which the moments of

the random variables

Xt =
Xt

n
s=1

X2
s

I{Xt ≠0}, t = 1, . . . , n,

are finite, where (Xt) is a sequence of random variables. First note
that

|Xt |
−2

≥ I{Xt ≠0}

n
s=1

X2
s =:Yt , t = 1, . . . , n. (11)

It will be convenient to work with the sequence (Yt).

Lemma 3.6. Let α be a positive number. Assume that one of the
following conditions is satisfied:

1. X1, . . . , Xn are i.i.d., P(|X | ≤ x) ≤ cxγ for some γ , c > 0 and all
x ≤ x0, and nγ > α.

2. (X1, . . . , Xn) has a bounded density fn in some neighborhood of the
origin and n > α.

Then EY−α/2
t < ∞ and, hence, E|Xt |

α < ∞ for t = 1, . . . , n.

The proof is given in the Appendix. Condition (2) is, for example,
satisfied if (X1, . . . , Xn) is Gaussian or Student-t , and n > α.

3.2. Tail asymptotics for regression coefficient estimators

3.2.1. i.i.d. noise
In this sectionwe consider three sequences of random variables

satisfying the following basic

Assumptions. 1. (Xt) is a sequence of randomvariableswith Xt ≠

0 a.s. for every t .
2. (εt) is i.i.d., and ε is regularly varying with index αε > 0.
3. (ϕt) is i.i.d., and ϕ is regularly varying with index αϕ > 0.
4. (Xt) is independent of ((εt , ϕt)).

We investigate the distributional tails of the quantities ρn,ε and
ρn,ϕ defined in (5). Recall from (4) that the latter quantities are
closely related to the OLS estimatorβ of β in the regression model
(1) with multiplicative and additive noise.

Proposition 3.7. Assume conditions (1), (4) and fix n ≥ 2.

1. If (2) holds, then as x → ∞,

P(ρn,ε > x) ∼ P(ε > x)
n

i=1

E

 X2
i

n
s=1

X2
s


αε

,

P(ρn,ε ≤ −x) ∼ P(ε ≤ −x)
n

i=1

E

 X2
i

n
s=1

X2
s


αε

.

(12)

2. If (3) and, in addition,

E


n

i=1

X2
i

−
αϕ
2 −δ

< ∞ for some δ > 0, (13)
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hold, then, as x → ∞,

P(ρn,ϕ > x) ∼ P(ϕ > x)
n

i=1

E

XiI{Xi>0}
n

s=1
X2
s


αϕ

+ P(ϕ ≤ −x)
n

i=1

E

 |Xi|I{Xi<0}
n

s=1
X2
s


αϕ

,

P(ρn,ϕ ≤ −x) ∼ P(ϕ ≤ −x)
n

i=1

E

XiI{Xi>0}
n

s=1
X2
s


αϕ

+ P(ϕ > x)
n

i=1

E

 |Xi|I{Xi<0}
n

s=1
X2
s


αϕ

.

Proof. Since (Xt) and (εt) are independent and X2
t /
n

s=1 X
2
s ≤ 1,

statement (1) follows from Lemma 3.4.
If (Xt) and (ϕt) are independent and E|Xt/

n
s=1 X

2
s |
αϕ+ε < ∞

for some ε > 0, one can apply Lemma 3.4 to the tails of ρn,ϕ . An
appeal to (11) and (13) ensures that this condition is satisfied, and
therefore statement (2) follows. �

Sufficient conditions for condition (13) are given in Lemma 3.6.
Various expressions in Proposition 3.7 can be simplified if one as-
sumes that X1, . . . , Xn are weakly exchangeable, i.e., the distribu-
tion of Xπ(1), . . . , Xπ(n) remains unchanged for any permutation
π(1), . . . , π(n) of the integers 1, . . . , n. This condition is satisfied
if (Xt) is an exchangeable sequence. This means that (Xn) is condi-
tionally i.i.d. If X1, . . . , Xn are weakly exchangeable, then, for ex-
ample, (12) turns into

P(ρn,ε > x) ∼ n P(ε > x) E

 X2
1

n
s=1

X2
s


αε

,

P(ρn,ε ≤ −x) ∼ n P(ε ≤ −x) E

 X2
1

n
s=1

X2
s


αε

.

If we assume in addition that (Xt) is stationary and ergodic,
the strong law of large numbers applies to (|Xt |

p) for any p > 0
with E|X |

p < ∞. This, together with a dominated convergence
argument, allows one to determine the asymptotic order of the
tail balance parameters in Proposition 3.7 as n → ∞. We restrict
ourselves to ρn,ε; the quantities ρn,ϕ can be treated analogously.
Consider

mn(αε) :=

n
t=1

E

 X2
t

n
s=1

X2
s


αε

= E

 n−αε
n

t=1
|Xt |

2αε
n−1

n
s=1

X2
s

αε
 .

Assume that E |X |
2max(1,αε) < ∞. Then the law of large numbers

and uniform integrability imply that as n → ∞,

mn(αε)


→0 if αε > 1
= 1 if αε = 1
→∞ if αε < 1.

We note in passing the difference between the large sample CLT
based results and the fixed sample but heavy tail based result
derived here. Indeed, for αε > 1 (i.e., finite variance case) we have
mn(αε) → 0 as n → ∞. This means that tails become thinner for
large n and fixed x, whereas for n fixed and x → ∞ the tails are
determined by the heavy tails of ε.

Proposition 3.7 provides sufficient conditions for regular vari-
ation of ρn,ε and ρn,ϕ . From this property we can derive our main
result on the tails of the OLS estimatorβ = β + ρn,ε + ρn,ϕ of the
regression coefficient β .

Corollary 3.8. If the conditions of Proposition 3.7 hold, then ρn,ε
and ρn,ϕ are regularly varying with corresponding indices αε and αϕ .
Moreover, if we assume that αε ≠ αϕ or that (εt) is independent of
(ϕt ) and αε = αϕ , then, as x → ∞,

P(ρn,ε + ρn,ϕ > x) ∼ P(ρn,ε > x)+ P(ρn,ϕ > x),
P(ρn,ε + ρn,ϕ ≤ −x) ∼ P(ρn,ε ≤ −x)+ P(ρn,ϕ ≤ −x),

where the corresponding asymptotic expressions for the tails of ρn,ε
and ρn,ϕ are given in Proposition 3.7.

Proof. The regular variation of ρn,ε and ρn,ϕ is immediate from
Proposition 3.7. If αε ≠ αϕ , then the statement follows from the
third part of Lemma 3.2. If α = αε = αϕ and (εt) and (ϕt) are
independent, then the vector (ε1, . . . , εn, ϕ1, . . . , ϕn) is regularly
varying inR2n with index α. Now a direct application of Lemma 3.4
yields the statement. �

Related work on the tail behavior of the OLS estimator in the
linear model Y = Xb + e can be found in He et al. (1990) and
Jurečkova et al. (2001), see also the references therein. Here X
is a design matrix, b the parameter vector to be estimated, e a
vector of independent errors with common symmetric absolutely
continuous distribution G. The authors consider light- and heavy-
tailed cases. The heavy-tailed case is defined by assuming that the
limit limx→∞(logG(x))/ log x−α

= 1 exists for some α > 0. This
condition is equivalent to x−α−ε

≤ G(x) ≤ x−α+ε for every ε > 0
and large x ≥ x0(ε). It includes the regularly varying case. Under
this condition bounds for the tails of the OLS estimator are derived.
Under our slightly stronger conditionswe are able to derive explicit
expressions for these tails.

3.2.2. The noise is a linear process
In the applications we also consider sequences (εt) and (ϕt) of

dependent random variables. We assume that (εt) is a linear pro-
cess, i.e., there exist real coefficients ψj and an i.i.d. sequence (Zt)
such that εt has representation

εt =

∞
j=0

ψjZt−j =

t
j=−∞

ψt−jZj, t ∈ Z. (14)

The best known examples of (causal) linear processes are the
ARMAand FARIMAprocesses; see for example Brockwell andDavis
(1991). Throughout we assume that Z = Z1 is regularly vary-
ing with index αZ > 0 satisfying the tail balance condition

P(Z > x) = p
L(x)
xαZ

(1 + o(1)) and

P(Z ≤ −x) = q
L(x)
xαZ

(1 + o(1)), x → ∞,

(15)

for some p, q ≥ 0 and p + q = 1. If the additional conditions

∞
i=0

ψ2
i < ∞ for some αZ > 2,

∞
i=0

|ψi|
αZ−ϵ < ∞ for some αZ ≤ 2, some ε > 0,

EZ = 0 for αZ > 1,

(16)
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on the coefficients ψj and the distribution of Z hold, then (see
Mikosch and Samorodnitsky (2000)) εt is regularly varying with
index αε = αZ satisfying the relations

P(ε > x) = (1 + o(1)) P(|Z | > x)

×

∞
j=0


p (ψ+

j )
αZ + q (ψ−

j )
αZ

, x → ∞, (17)

and

P(ε ≤ −x) = (1 + o(1)) P(|Z | > x)

×

∞
j=0


q (ψ+

j )
αZ + p (ψ−

j )
αZ

, x → ∞, (18)

where x+ and x− denote the positive and negative parts of the real
number x. This means that εt is regularly varying with index αε =

αZ , and it is not difficult to show that the finite-dimensional distri-
butions of (εt) are also regularly varying with the same index αε .

For further discussion we also assume that ϕt is a linear process
with representation

ϕt =

t
j=−∞

ct−j γj, t ∈ Z, (19)

where (γt) is an i.i.d. regularly varying sequence with index αγ >
0. Assuming (16) for (cj) instead of (ψj) and the tail balance con-
dition (15) for γ instead of Z , it follows that the finite-dimensional
distributions of (ϕt) are regularly varying with index αϕ = αγ and
the relations analogous to (17) and (18) hold for the left and right
tails of ϕt .

Next, we investigate the tail behavior of the quantities ρn,ε and
ρn,ϕ under the assumption that (εt) and (ϕt) are regularly vary-
ing linear processes. We state our basic assumptions as follows.

Assumptions. 1. (Xt) is a sequence of randomvariableswith Xt ≠

0 a.s. for every t .
2. (εt) is a linear process with representation (14), i.i.d. regularly

varying noise (Zt)with index αε > 0 satisfying (15) and coeffi-
cients ψj satisfying (16).

3. (ϕt) is a linear process with representation (19), i.i.d. regularly
varying noise (γt)with index αϕ > 0 satisfying (15) (with Zj re-
placed by γj) and coefficients cj satisfying (16) (withψj replaced
by cj).

4. (Xt) is independent of ((εt , ϕt)).

The following result shows that ρn,ε and ρn,ϕ are regularly
varying. Compare this resultwith Proposition 3.7 in the case of i.i.d.
noise.

Proposition 3.9. Assume that assumptions (1), (4) hold. Fix n ≥ 2.

1. If assumption (2) holds, as x → ∞, then

P(ρn,ε > x)

∼ P(Z > x)
n

j=−∞

E




n
t=max(1,j)

ψt−jX2
t

n
t=1

X2
t


+

αε

+ P(Z ≤ −x)
n

j=−∞

E




n
t=max(1,j)

ψt−jX2
t

n
t=1

X2
t


−

αε

,

P(ρn,ε ≤ −x)

∼ P(Z > x)
n

j=−∞

E




n
t=max(1,j)

ψt−j X2
t

n
t=1

X2
t


−

αε

+ P(Z ≤ −x)
n

j=−∞

E




n
t=max(1,j)

ψt−j X2
t

n
t=1

X2
t


+

αε

.

2. If (3) and, in addition, (13) hold, then

P(ρn,ϕ > x)

∼ P(γ > x)
n

j=−∞

E




n
t=max(1,j)

ct−jXt

n
t=1

X2
t


+

αϕ

+ P(γ ≤ −x)
n

j=−∞

E




n
t=max(1,j)

ct−jXt

n
t=1

X2
t


−

αϕ

,

P(ρn,ϕ ≤ −x)

∼ P(γ > x)
n

j=−∞

E




n
t=max(1,j)

ct−j Xt

n
t=1

X2
t


−

αϕ

+ P(γ ≤ −x)
n

j=−∞

E




n
t=max(1,j)

ct−j Xt

n
t=1

X2
t


+

αϕ

.

The following corollary gives our main result about the tail
behavior of the OLS estimator β of β in the case when both (εt)
and (γt) constitute linear processes.

Corollary 3.10. If the assumptions for Proposition 3.9 hold, then ρn,ε
and ρn,ϕ are regularly varying with corresponding indices αε and αϕ .
Moreover, if we assume that αε ≠ αϕ or that (εt) is independent of
(ϕt ) and αε = αϕ , then, as x → ∞,

P(ρn,ε + ρn,ϕ > x) ∼ P(ρn,ε > x)+ P(ρn,ϕ > x),
P(ρn,ε + ρn,ϕ ≤ −x) ∼ P(ρn,ε ≤ −x)+ P(ρn,ϕ ≤ −x),

where the corresponding asymptotic expressions for the tails of ρn,ε
and ρn,ϕ are given in Proposition 3.9.

3.2.3. More general dependent noise
In Section 3.2.2 we demonstrated how the results of Sec-

tion 3.2.1 change under linear dependence. We focused on the
linear process case because wewere able to obtain explicit expres-
sions for the asymptotic tail behavior of ρn,ε , ρn,ϕ andβ . For more
complicated dependence structures, the regular variation of these
quantities follows by an application of Lemma 3.4, if the finite-
dimensional distributions of the noise sequences (εt) and (ϕt) are
regularly varying.

For example, if we assume that both (εt) and (ϕt) constitute
GARCH processes, then the finite-dimensional distributions of
these processes are regularly varying with positive indices,
provided some mild conditions on the noise sequences of the
GARCH processes hold. We refer to Basrak et al. (2002) for the
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corresponding theory on regular variation of GARCH processes.
Alternatively, one can choose (εt) as a GARCH process with
regularly varying finite-dimensional distributions and (ϕt) as
a linear process (e.g. ARMA) with regularly varying finite-
dimensional distributions, or vice versa. The index of regular
variation of a GARCH process is a known function of the GARCH
parameters and the distribution of the noise. For GARCH processes
the asymptotic behavior of the tails of β cannot be given in
explicit form as for linear processes; see Proposition 3.9. However,
we know from Lemma 3.4 that β inherits the tail index of the
minimum of αϕ and αε .

Remark 3.11. The above single regressor theory can be readily
extended to the case ofmultiple regressors. This approach requires
the condition of multivariate regular variation as discussed in e.g.
Basrak et al. (2002) and results in the multivariate analogues of
the expressions from Proposition 3.7. The corresponding theory
is rather technical and therefore we have chosen to omit further
details.

4. Simulation study

We conduct a simulation study based on the model (1) with
β = 1 to gain further insight into the theoretical results. The β
is estimated by the OLS estimatorβ from (4), with the Xt ’s mean
corrected to allow for an intercept. First we discuss the specific
cases of puremultiplicative and additive noise, then a combination
of the two. Subsequently we investigate how linear and non-linear
dependence in the innovations influences the dispersion of the
coefficient estimates.

4.1. Pure multiplicative noise

Consider the special multiplicative case of (1)

Yt = (1 + εt)Xt

under the conditions:

1. (Xt) is i.i.d. N(0, 0.04).
2. (εt) is i.i.d. N(0, 1); or (εt) is i.i.d. Student-t distributed with
α = 3 degrees of freedom and rescaled such that the variance
of the εt ’s is 1.

3. (Xt) and (εt) are independent.

Under these conditions Corollary 3.8 applies if ε is Student-
t distributed. Indeed, as ε is regularly varying with index α, we
may conclude thatβ = β + ρn,ε is regularly varying with index
α. Moreover, the tail asymptotics of ρn,ε are described in part (1)
of Proposition 3.7. Since the Xt ’s are i.i.d. and ε is symmetric, this
means that

P(ρn,ε > x) = P(ρn,ε ≤ −x) ∼ n E

 X2
1

n
s=1

X2
s


α

P(ε > x). (20)

We illustrate that if ε is Student distributed, the estimatorβ has a
wider dispersion in small samples than if the ε follows a Gaussian
distribution with the same variance. From (20) one shows that at
fixed sample size n, deep enough into the tails an increase of the
degrees of freedom α (which increases the number of bounded
moments), lowers the multiplicative constant E


X2
1 /
n

s=1 X
2
s

α
and it also reduces the tail probability P(ε > x). Recall that
the normal distribution is the limit distribution of the Student-t
distribution as α → ∞. This suggests that the normal distribution
is a natural benchmark against which the Student-t results can be
judged.

Table 1
Slope estimates for the multiplicative model.

Student-t Normal

Sample size 25 50 100 25 50 100
Mean 1.000 1.000 0.998 1.000 1.000 0.997
St. dev. 0.343 0.239 0.171 0.336 0.242 0.172
Min −5.226 −1.514 −2.321 −0.942 0.064 0.254
0.5% quantile −0.055 0.289 0.505 0.093 0.389 0.542
2.5% quantile 0.360 0.540 0.669 0.331 0.526 0.657
97.5% quantile 1.645 1.453 1.323 1.664 1.472 1.332
99.5% quantile 2.045 1.747 1.479 1.875 1.637 1.435
Max 5.615 4.569 2.927 2.438 2.051 1.628

We conduct 20,000 simulations of the time series (Yt)t=1,...,n
and (Xt)t=1,...,n for n = 25, 50, 100. Both the Student and normal
distributed innovations ε are generated by using the same pseudo
uniformly distributed random variables. Subsequently, we trans-
form these random variables by the respective inverse distribu-
tion functions. In this waywe control for sampling noise across the
alternative distributions.

The results are in Table 1. The mean of theβ is always close to
1, the standard deviations do not vary much for fixed n across the
different parameter sets. Choosing the same variance for ε under
the normal and Student specifications translates into identical
variance of the β ’s across the two cases. The distribution of
the estimates cross in the neighborhood of the 2.5% and 97.5%
quantiles. More substantial differences between the Normal and
Student basednoise arise in the tails at the 0.5% and99.5%quantiles
and beyond. The Student distributed innovations generate a
number of outliers in the β ’s vis a vis the normally distributed
innovations. The boxplots in Fig. 1 are quite revealing in this
respect. Note that the vertical axes in the figure have different
scales depending on the sample size. The table and figure also
reveal the usual large sample based effect as the range of the
distribution of theβ ’s shrinks with the sample size.

How to use these findings for inference about the observed
uncertainty of the estimators β across different samples? For
example, evaluate (20) at two large quantile levels t and s. Then
the ratio of the tail probabilities satisfies the relation

P
β − β > t


P
β − β > s

 ≃
P (ε > t)
P (ε > s)

≃


t
s

−α

, (21)

where the second step follows from the fact that the Student
distribution satisfies (6) with L(x) = c for some constant c > 0
and p = q = 0.5. We continue with some elementary conclusions
based on Table 1.

Consider the column Normal 25. Quite appropriately, the nor-
mal distribution at the 97.5% level with estimated standard devia-
tion 0.336, yields the quantile 1 + 1.96 ∗ 0.336 = 1.658, which is
very close to the recorded 1.664. Similarly, at 99.5% we find 1.875,
while theoretically one should get 1 + 2.58 ∗ 0.336 = 1.866 9. If
instead the Student-t columnwas erroneously interpreted as com-
ing from normal innovations, then at the 97.5% probability level
with estimated standard deviation 0.343, one obtains the quan-
tile 1 + 1.96 ∗ 0.343 = 1.672 . This is still close to the recorded
1.645 quantile value. But at 99.5% we find the quantile 2.045 in
the Student 25 experiment, while the normal distribution yields
the quantile 1 + 2.58 ∗ 0.343 = 1.885. Under normality, the
2.045 quantile value is associated with the standard normal quan-
tile (2.045 − 1) /0.343 = 3.0466 corresponding to 99.88%. So an
excess probability of 0.5% in the Student case reduces by a factor 4
to 0.12% in the normal case. Instead, if we use the formula (21)with
t = 2.045 − 1, s = 1.645 − 1, α = 3 and P

β − β > s


= 2.5%,
we obtain

P
β − β > t


=


2.045 − 1
1.645 − 1

−3

× 0.025 ≃ 5. 878 × 10−3

which is close to the actual 0.995% level in the Table 1.



8 T. Mikosch, C.G. de Vries / Journal of Econometrics ( ) –

sample size 25 sample size 100

Student Student NormalNormal
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Fig. 1. Boxplots for Yt = (1 + εt )Xt .

Furthermore, if we investigate the probability of obtaining the
maximum observation 5.615, a calculation based on our formula
(21) yields

P
β − β > t


=


5.615 − 1
1.645 − 1

−3

× 0.025 ≃ 6.825 × 10−5.

This value is quite close to the reciprocal of the number of sim-
ulations: 0.00005. However, if the normal model were applied,
the corresponding probability would be judged smaller than 10−40

(using the classical Laplace first order approximation based on the
ratio of the density to the quantile). This approach yields an en-
tirely different order ofmagnitude. Thus, if one has a number of co-
efficient estimates from different samples, the above formula can
be used to check whether the largest and smallest estimates can
reasonably be expected by using the more central outcomes and
an extrapolation based on (21). This judgment can be contrasted
with the usual (CLT based) opinion.

4.2. Pure additive noise

Next we investigate the other special case of (1), which is the
specification with solely additive noise

Yt = 1 + Xt + ϕt ,

under the conditions

1. (Xt) is i.i.d. N(0, 0.04).
2. (ϕt) is i.i.d. N(0, 0.09) or (ϕt) is i.i.d. Student-t distributed with
α = 3 degrees of freedom and rescaled such that the variance
of the ϕt ’s is 0.09.

3. (Xt) and (ϕt) are independent.

Ifϕ is Student-t distributed, Corollary 3.10 applies. In particular,
we conclude from part (2) of Proposition 3.7 that

P(ρn,ϕ > x) = P(ρn,ϕ ≤ −x)

∼ n E

 |X1|

n
s=1

X2
s


α

P(ϕ > x). (22)

As in the case of (20), the expression (22) reveals that sufficiently
deep into the tails and at fixed n, an increase in α lowers the
tail probability P(

ρn,ϕ > x). We conduct again 20,000 simu-
lations to generate the time series (Yt)t=1,...,n and (Xt)t=1,...,n for
n = 25, 50, 100. The same seeds are used as in the case of themul-
tiplicative model to enhance comparability across the two cases.
The variance of ϕ is chosen lower than the variance of ε of the
multiplicative specification; this generates quantiles of compara-
ble size. As before, the mean ofβ is always close to 1, the standard

Table 2
Slope estimates for the additive model.

Student-t Normal

Sample size 25 50 100 25 50 100
Mean 0.999 1.002 1.001 0.998 1.003 1.000
St. dev. 0.324 0.218 0.153 0.318 0.218 0.153
Min −2.937 −1.675 −0.770 −0.406 0.123 0.323
0.5% quantile 0.024 0.361 0.587 0.146 0.415 0.611
2.5% quantile 0.372 0.578 0.706 0.363 0.569 0.700
97.5% quantile 1.621 1.419 1.300 1.626 1.423 1.299
99.5% quantile 1.996 1.611 1.429 1.859 1.570 1.393
Max 5.540 3.776 3.413 2.398 2.179 1.617

deviations do not vary much for fixed n across the different pa-
rameter sets, neither are the 2.5% and 97.5% quantiles very differ-
ent across the Student and normally distributed innovations. But at
the more extreme quantiles we do again see from Table 2 that the
heavy tail makes a difference. By the fact that the distributions of
theβ ’s cross, not only does the Student noise generate more out-
liers, it also implies more peakedness into the center. Boxplots are
provided in Fig. 2 and tell a similar story as for the case of multi-
plicative noise. As the different scales of the vertical axes reveal,
the ranges shrink if the sample size n increases.

4.3. Combination of additive and multiplicative noise

We combine the multiplicative and additive model into the
mixed model
Yt = (1 + εt)(1 + Xt)

satisfying the conditions:
1. (Xt) is i.i.d. N(0, 0.04).
2. (εt) is i.i.d. N(0, 0.09) or (εt) is i.i.d. Student-t distributed with
α = 3 degrees of freedom and rescaled such that the variance
of the εt ’s is 0.09.

3. (Xt) and (εt) are independent.
The mixed model has a random intercept and a random coeffi-

cient driven by the same noise ε. Hence, the tail probabilities in the
case of the Student noise are the sum of (20) and (22)

n

E

 X2
1

n
s=1

X2
s


α

+ E

 |X1|

n
s=1

X2
s


α P(ε > x). (23)

The setup of the experiment is as before andwe again use the same
seed. The results are in Table 3 and in Fig. 3. Even though the ad-
ditive noise andmultiplicative noise are both present and are even
perfectly correlated, the results are very similar to the two previ-
ous cases. Even if we increase the variance of ε to 1, as in the case
of the pure multiplicative model, the results do not change very
much (this case is not shown for consideration of space).
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Fig. 2. Boxplots for Yt = 1 + Xt + ϕt .
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Fig. 3. Boxplots for Yt = (1 + εt )(1 + Xt ).

Table 3
Slope estimates for the mixed model.

Student-t Normal

Sample size 25 50 100 25 50 100
Mean 0.999 1.002 1.000 0.998 1.003 0.999
St. dev. 0.344 0.230 0.161 0.334 0.229 0.162
Min −4.804 −2.117 −0.344 −0.535 0.054 0.201
0.5% quantile −0.030 0.318 0.560 0.103 0.387 0.581
2.5% quantile 0.350 0.554 0.684 0.329 0.549 0.679
97.5% quantile 1.648 1.436 1.315 1.654 1.446 1.318
99.5% quantile 2.079 1.667 1.465 1.902 1.592 1.417
Max 6.603 4.611 3.390 2.538 2.280 1.697

4.4. Linearly dependent noise

We investigate the effect of autoregressive noise in the multi-
plicative model

Yt = 1 + (1 + εt)Xt .

In what follows, we keep the assumptions 1 and 3, but we replace
(2) by a particular dependence condition:
(2′) (εt) is an autoregressive process of order 1, i.e. AR(1), with

coefficient

εt = 0.7εt−1 + Zt , t ∈ Z,

and where (Zt) is i.i.d. Student-t distributed with α = 3
degrees of freedom and rescaled such that the variance is
unity; or, alternatively, (Zt) is i.i.d. standard Gaussian.

Under this assumption, Zt , εt and ρn,ε are regularly varyingwith
index α and from the first part of Proposition 3.9 we have

P(ρn,ε > x) = P(ρn,ε ≤ −x)

∼ P(Z > x)
n

j=−∞

E


n

t=max(1,j)
γ t−jX2

t

n
t=1

X2
t


α

. (24)

Notice that the factor in (24) after P(Z > x) is larger than in the case
of i.i.d. εt . Therefore the heavy tails of ε have a stronger influence
on the tails of ρn,ε . This is illustrated in Table 4 and Fig. 4. We used
a different seed from the previous three cases to generate some
variety; nevertheless the seed is only important for the size of the
most extreme quantiles.

The autoregressive nature of the innovations εt makes the
distribution of ρn,ε more spread out than their i.i.d. counterparts,
both under the Gaussian noise and the Student distributed noise.
The usual large sample effect operates as before in reducing the
range. To offer a somewhat different view as is conveyed by
boxplots, we report in Fig. 4 histograms (the boxplots are available
upon request). These histograms demonstrate nicely that not only
are the coefficient estimates more dispersed, the center of the
distribution is also more peaked due to heavy tailed innovations.
To conclude, the time dependency in the noise increases the
dispersion of the OLS estimates in samples of moderate size. But
the differences between the Normal and Student noise are not very
different from before. This changes when we investigate the case
of non-linear dependence.

4.5. Non-linear dependency

In order to study the influence of non-linear dependence on the
OLS slope estimator for themultiplicativemodel Yt = 1+(1+εt)Xt
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Table 4
Slope estimates for the multiplicative model with AR(1) noise.

Student-t Normal

Sample size 25 50 100 25 50 100
Mean 1.001 1.002 1.000 1.007 1.003 1.003
St. dev. 0.719 0.529 0.383 0.718 0.532 0.380
Min −14.257 −5.659 −3.361 −2.109 −1.205 −0.332
0.5% quantile −1.050 −0.483 −0.041 −0.838 −0.403 0.026
2.5% quantile −0.348 −0.020 0.255 −0.399 −0.052 0.253
97.5% quantile 2.375 2.025 1.719 2.414 2.035 1.741
99.5% quantile 2.988 2.472 2.031 2.867 2.378 1.976
Max 8.170 7.193 6.944 4.126 3.339 2.406

Note: Monte Carlo results for Yt = 1 + (1 + εt )Xt , with εt = 0.7εt−1 + Zt , and where Z is either standard normal or unit variance Student-t with 3 d.f. distributed.
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Fig. 4. Histograms for Yt = 1 + (1 + εt )Xt , with εt = 0.7εt−1 + Zt .

Table 5
Slope estimates with ARCH(1) noise.

Model Multiplicative noise Additive noise
Student-t Normal Student-t Normal

Sample size 25 100 25 100 25 100 25 100
Mean 1.000 1.000 1.000 1.000 0.998 1.000 0.999 1.000
St. dev. 0.150 0.079 0.100 0.051 0.478 0.236 0.318 0.152
Min −0.555 −0.589 0.515 0.766 −5.383 −1.417 −0.333 0.334
0.5% quantile 0.482 0.753 0.734 0.866 −0.636 0.281 0.142 0.601
2.5% quantile 0.711 0.851 0.802 0.898 0.063 0.548 0.363 0.703
97.5% quantile 1.285 1.150 1.197 1.102 1.930 1.452 1.630 1.301
99.5% quantile 1.490 1.240 1.261 1.135 2.573 1.714 1.839 1.392
Max 3.315 1.877 1.561 1.238 7.797 4.209 2.646 1.557

Note: Monte Carlo results for Yt = 1 + (1 + εt )Xt and Yt = 1 + Xt + ϕt with ARCH(1) innovations in ε and ϕ.

and the additive model Yt = 1 + Xt + ϕt , we consider an ARCH(1)
process in the innovations ε and ϕ respectively. The two ARCH(1)
processes read

εt = σt Zt , σ 2
t = β + λ ε2t−1,

and

ϕt = σt Zt , σ 2
t = β + λ ϕ2

t−1,

for i.i.d. N(0, 1) noise (Zt). It follows from e.g. Basrak et al. (2002)
that ε and ϕ are regularly varying with index α which is given as
the unique solution to the equation

E|λZ2
|
α/2

= 1.

For α = 3, this boils down to solving Γ (2) =
√
π (2λ)−3/2,

which gives λ ≃ 0.732, see e.g. Embrechts et al. (1997, Chapter
8). Setting β = 0.09


1 −

1
2 (π)

1/3
≃ 0.024, then induces an

unconditional variance β/(1 − λ) of 0.09. The simulation setup is

as before, except that in order to initialize the ARCH process, the
first 5 realizations are ignored. For comparison we also draw an
i.i.d. N(0, 0.09) sample of ϕt ’s and εt ’s. Independently of (ϕt) and
(εt) we drew i.i.d. N(0, 0.04) random variables Xt . Subsequently
we calculate the 20,000 values of the OLS coefficient estimates.

The results are in Table 5. The differences between the heavy
tailed cases with ARCH additive noise and the cases of i.i.d.
normal additive noise are more pronounced than the cases with
multiplicative noise. The histograms for the additive model are
reported in Fig. 5. The differences for the additive case are
also more pronounced in comparison with the previous cases
generated by i.i.d. and linear noise. The distributions are much
more spread out in the case of ARCH noise in comparison the
normal i.i.d. noise. To conclude, in the case of additive noise case,
the OLS coefficient estimates vary more in medium sized samples
if the noise process is of the ARCH variety.
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5. Application

Themotivation for this study comes from the empirical fact that
in various applications involving small andmediumsize samples of
financial data there appears awide variation in reported coefficient
estimates across different samples. One possible explanation for
this variation is the regular variation of the distributions of
the innovations. Both from an estimation point of view and for
policy making it is important to capture the uncertainty in the
estimates, as standard central limit type of error bands can be quite
misleading in smaller samples.

The application focuses on the yield curve. Mankiw and
Miron (1986) report typical slope estimates of the expectations
coefficient in yield curve regressions for quite different samples.
There are two important data features. First, all reported point
estimates are less than two, and two slope estimates are even
negative (one is significantly negative). Only in one of their five
samples, with about 80 observations each, the point estimates
come close to the benchmark theoretical slope of two (zero term
premium). Second, the point estimates come in a wide range.
Fama and Bliss (1987) emphasize the variability of the coefficient
estimates. While a sizable literature has focused on the apparent
downward bias, in this studywe focus on the coefficient variability.

5.1. Economics

To introduce the issue of yield curve estimation, consider a
stylized three period investment problem under uncertainty:

max EU(x, Xi) = πV (x)+ (1 − π)ΣiπiρV (Xi), Σiπi = 1 (25)
subject tow = d + b,
x = (1 + r)d + (1 + q)b,
Xi = (1 + s)b + (1 + Ri)(1 + r)d, i = 1, . . . , n.

Here V (·) and ρV (·) are the strictly concave first and second
period utility functions and where ρ ≤ 1 is the pure rate of time
preference. There are two types of uncertainty. The first type of
uncertainty stems from the uncertain liquidity needs of agents as
in Diamond and Dybvig (1983):With probability π an agent wants
to consume early, and with probability 1 − π an agent finds out
that he desires to consume late during the third period.

The other uncertainty,πi, pertains to the return Ri on the second
period short term bond. At the beginning of the first period, wealth
w can be invested in a one-period bond d yielding 1 + r in the
second period and a two-period zero-coupon bond b yielding 1+ s

in the third period. The one-period bond investment can be rolled
over into a new one-period bond investment if one turns out to be
a late consumer. The interest rate on the second period short term
bond is uncertain at the time when the first investment decision
has to be taken; Ri materializes with probability πi, and there are
n states of the world i = 1, . . . , n. If the consumer has early
liquidity needs, the long termbond investment has to be liquidated
early. This comes at a cost, and we assume that q < r , where
r − q is the liquidation premium. The costs of early liquidation
are due to irreversibilities of longer term capital investments and
transactions costs, see Diamond and Dybvig (1983). If (1 + s) >
(1 + r)E[1 + Ri], a risk averse agent will want to hedge against
liquidity needs by partly investing in the long term bond and partly
investing in the short term bond.

The first order conditions for a maximum to the problem (25)
imply the following pricing kernel

E[Mi(1 + Ri)] =
q − r
1 + r

+ E

Mi

1 + s
1 + r


, (26)

where

Mi = ρ
1 − π

π

∂V (Xi)/∂Xi

∂V (x)/∂x

is the intertemporal marginal rate of substitution or discount fac-
tor, for short.

Rewrite (26) byusing the covariance cov(Mi, Ri−r)between the
discount factor and the short term interest rate innovations. Let y
be the 1-period yield on the two-period bond, i.e., (1+y)2 = (1+s).
Then (26) can be restated as

E[Ri − r] = 2(y − r)+ P(Mi, Ri, q)+ T (y, r), (27)

and where the term premium P and convexity term T read respec-
tively

P(Mi, Ri, q) =
1

EMi

q − r
1 + r

+
cov(−Mi, Ri − r)

EMi
,

T (y, r) =
(y − r)2

1 + r
.

Thus the expected difference between two subsequent short rates
is equal to twice the difference between the long yield and the
short rate plus the term premium P and a small convexity term T .
The term premium consists of two parts, a liquidity premium and
a risk premium. The liquidity premium is negative, since q < r ,
which reflects the costs of liquidating the long term investment
early. If agents have power utility preferences and are risk averse,
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Table 6
Slope estimates for expectations hypothesis model.

Count OLS Relative Relative & convex Pool & relative Pool & relative & convex

Bel 1.01 1.86 0.58 0.99 0.54
Can 1.20 1.91 2.14 1.98 2.09
Ger 1.28 0.97 0.22 1.00 0.47
Den 2.02 2.21 2.27 1.44 1.93
Fr 1.99 2.89 2.96 2.68 3.35
UK 0.87 1.37 1.35 1.15 1.28
It 0.98 1.30 1.27 1.22 0.97
Jap 0.95 1.02 1.26 1.15 1.28
Aus 0.51 1.39 1.40 1.25 1.46
Por 0.54 0.70 0.42 0.42 0.49
Swe 0.84 1.29 1.16 1.05 1.10
USA 0.36 0.91 1.10 0.66 1.09
Swit 1.15 1.01 0.99 1.00 0.91
Neth 1.22 / / / /
Mean 1.06 1.44 1.31 1.23 1.30
Range 1.66 2.19 2.74 2.26 2.88
St. dev. 0.48 0.61 0.76 0.57 0.79

Note: The table records coefficient estimates for the slope coefficient of the expectations model. The first column are the per country OLS results for (28); column two is for
(29) without the convexity term and the third column is for (29). The base country in the regressions is The Netherlands.

then the risk premium part is positive.2 Thus the term premium P
can be of either sign, since the liquidity premium is negative and
the risk premium is positive.

Not much can be said, however, about the correlation between
P and the yield differential y − r . As the term premium is
unobserved, this may cause an omitted variable bias in regressions
ofRi−r on y−r . This is the standard explanation for the ‘‘downward
bias’’ in the regression

Ri − r = θ + β(y − r)+ ε, Eε = 0. (28)

Typically the hypothesis β = 2, known as the Expectations
Hypothesis, applies if agents are risk neutral and when there is
no premium to liquidity in (27), is rejected as the estimated
coefficients are usually significantly below 2. In this study we take
β < 2 as a stylized fact. Instead, we focus on the considerable
dispersion of the reported β estimates in different samples.

In the application, we first run the specification (28) for a
number of different countries, with and without the convexity
term, and basically find the same results as are reported in the
literature. Since the model applies to each country individually,
one can also investigate themodel relative to a benchmark country.
Due to a negative correlation between the unobserved term
premium and the spread, the relative specification may diminish
the omitted variable bias. The bias would be reduced if cov(X, P)+
cov(X∗, P∗) is negative and −cov(X, P∗) − cov(X∗, P) is positive,
which happens when countries experience simultaneously similar
movements in their yield curves, so that P (and P∗) also co-vary
negativelywith y∗

−r∗ and y−r respectively. Thuswe also estimateRi −r = θ + β(y −r)+ τT (y, r)+ε, (29)

where X̃ = X − X∗, and X∗ denotes the benchmark country
variable.

5.2. Time series regressions

We obtained data on the one month and two month interest
rates from February 1995 to December 1999 for 14 countries,
yielding 59 observations per country. The countries with the
abbreviations used in the tables are respectively Belgium (Bel),
Canada (Can), Germany (Ger), Denmark (Den), France (Fr), United

2 This can be shown by using that for any random variable X ≥ 0 and a
monotone non-decreasing function g(x) it follows fromassociation that the relation
E[X g(X)] ≥ E [X] E [g(X)] holds; see Resnick (1987, Lemma 5.32(iv)).

Kingdom (UK), Italy (It), Japan (Jap), Austria (Aus), Portugal (Por),
Sweden (Swe), United States of America (USA), Switzerland (Swit),
and The Netherlands (Neth). The data are beginning of the month
figures on short term treasury paper available from datastream.
Since for thepurpose of the paperweare interested in running both
time series, panel and cross section regressions, we are squeezed
by data availability. Only since the middle of the 1990s there are
more than 10 countries which report such rates. By the end of that
decade, though, we are confronted by the data squeeze due to the
European monetary unification process, which implies that at the
short end of the yield curve rates became about equal.

The first column of Table 6 gives the results for specification
(28). The next column labeled relative is based on (29) but without
the convexity term, andwhere TheNetherlands is taken as the base
country. The third column labeled relative & convex is based on
the full specification of (29) including the convexity term T (y, r).
The last two columns repeat the same exercise but use panel
regressions in which the data are pooled. The table conveys two
main results. (i) The β-coefficients are almost all significantly
positive, but hover more closely around 1, rather than around the
ExpectationsHypothesis value 2, indicating that the termpremium
P(Mi, Ri, q) is negatively correlated with (y − r). Comparing the
first column of Table 6 to the other columns, it appears that using
the relative country spreads is helpful in reducing the downward
bias. (ii) There is quite a considerable variation in the coefficient
estimates as can be seen from the range statistic, which is the
difference between the highest and the lowest estimated value.
These results thus corroborate the results reported previously in
the literature, although in our sample we do not find any negative
coefficients. Not reported are the intercept estimates which were
invariably very small and never significantly different from zero.

5.3. Cross section regressions and coefficient variability

We investigate further the considerable variation in the individ-
ual cross country estimates. Fama and Bliss (1987) and Cochrane
(2001, Chapter 20) show that almost all variation is in the short
term interest innovations Ri − r rather than in the variation of the
expected changes, i.e. σRi−r ≫ σy−r . Could it be that the news dis-
tribution is heavy tailed in such a way that it explains the consid-
erable variation in the slope estimates?

Since several countries pursued quite similar economic (mon-
etary) policies during the second half of the nineties, the variation
is perhaps not so much a cross country issue. Rather, the varia-
tion may be due to similar country shocks over time. To investi-
gate the amount of time variation in the slopes, we now assume
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Fig. 6. Cross section slope estimates.

Table 7
Summary statistics cross country slope estimates.

Mean 1.18
Standard error (of mean) 0.26
Median 1.21
Standard deviation 2.03
Sample variance 4.13
Kurtosis 4.52
Skewness 0.50
Range 14.65
Minimum −5.43
Maximum 9.22
Mean R2 0.31
Standard error (of mean R2) 0.03
Standard deviation R2 0.22

Note: The table records the summary statistics of the cross country regressions.

identical slopes per country but allow for temporary disturbances.
This model can be estimated by running per period cross section
regressions. A graph of the 59 cross countryβt OLS estimates for
the specification (29) is provided in Fig. 6. There is indeed quite a
bit of variation in the cross section slope estimates. Since the yield
curve is widely known to be rotating and shifting, this was per-
haps to be expected. Summary statistics are given in Table 7. The
standard error of the slope estimates, the range and the kurtosis
confirm the sizable variation. But this is not due to a bad fit, since
the R-squared statistic is mostly acceptable for the small cross sec-
tion regressions. The variation appears to be genuine. The average
of the slope estimates re-confirms the downward bias from the
Expectations Hypothesis.

The high kurtosis reported in Table 7 points towards the
possibility of a heavy tailed distribution. In Section 3 we showed
that the heavy tail feature of the innovations carries over to the
distribution of the coefficient estimates. To pursue this further, we
investigate the tail shape of the empirical distribution of the 59
cross sectionβt ’s.

To be able to exploit (20) or (22), as was done in (21), one
first needs an estimate of the coefficient of regular variation α.
The standard approach to estimating α is by means of computing
the Hill statistic, which coincides with the maximum likelihood
estimator of the tail index in case the data are exactly Pareto
distributed. If the Pareto approximation is only good in the tail area,
one conditions the estimator on a high threshold s, say, to obtain1
α

=
1
M


i=1,Xi<−s

log
−Xi

s
, (30)

where M is the random number of extreme observations Xi that
fall below the threshold −s. In practice one of the higher order
statistics is used as a threshold. If one plots α derived from (30)
against different threshold levels, one obtains the so called Hill
plot. Since the Hill estimator is biased, stemming from the fact
that the distribution is not exactly Pareto, there is a region where
if one uses too many observations the bias dominates, while
the variance exerts a dominating influence if one uses too few
observations. There exists an intermediate region inwhich the two
vices are optimally balanced. The way to read these plots is further
explained in Embrechts et al. (1997, p. 341).

The 59 slope estimates depicted in Fig. 6 are the basis for the
Hill plot. A Hill plot gives the value of the inverse of (30) along
the vertical axis, and the horizontal axis reports the number of
highest order statistics used in (30). First, however, the slopes are
demeaned by their empirical mean of 1.18. Secondly, we use the
absolute values of the demeaned slopes upon the presumption
that the slope distribution is symmetric. This helps to increase
the low number of observations. The Hill plot in Fig. 7 shows that
there is quite some variation if one uses only the most extreme
observations, whilemoving to the right the bias kicks in and causes
the monotone decline. Eyeballing this plot suggest that α ≃ 2.

Given the low number of observations, we also use the regres-
sion methodology to estimate α as a robustness check. To this end
Fig. 8 offers a Pareto log–log plot of the cross country slope esti-
mates. In a Pareto log–log plot, the log rank of the data is plotted
against the log of the slope estimates. A regression on the most
rightward (largest slopes) 26 observations gives a slope estimate
of −1.81, a standard error of 0.09, and R2 of 0.95. This corresponds
to an α = 1.81.

If we proceed with α = 1.8, we find that if we use as a bench-
mark the 10% largest observation (slope value 2.92) that at the 5%
level one should find

t ≃ 2.92 ×


0.1
0.05

1/1.8

≃ 4.29.

The demeaned 5% highest slope estimate is in fact somewhat lower
3.63. At the 1.5% probability level (corresponding to 1/59), which is
the highest slope estimate, we get a demeaned slope of 8.02, while
the approximation formula suggests

t ≃ 2.92 ×


0.1

0.015

1/1.8

≃ 8.38.
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Fig. 7. Hill plot cross section slope estimates.

Fig. 8. Pareto log–log plot of the cross section slope estimates.

The corresponding normal based calculation would give

P
β − β > 8.02


∼
σ

x
1

√
2π

exp


−
1
2

x2

σ 2


=

2.03
(8.02)

1
√
2π

exp


−

1
2


8.02
2.03

2


≃ 4. 12 × 10−5

which is much lower than 1.5 × 10−2. So from the fat tail point of
view, the variation and extremes in the slope estimates are quite
normal, but not so under the normal interpretation.3

Our theory can also be used to test the null Expectations
Hypothesis that β = 2. Assume that the cross section coefficient
estimates depicted in Fig. 6 and summarized in Table 7 are i.i.d.
This assumption is reasonable since, as discussed below, the data
reveal strong cross sectional but little intertemporal dependence.

3 The Pareto plot in Fig. 8 is approximately linear with slope estimate 1.97 over
the range of the 20% largest observations. Thus if we alternatively used these 20%
largest observations as a benchmark, our tail approximation formula yields t ≃

2.90 at the 5% level, while t ≃ 5.65 at the 1.5% probability level.

The average of the estimates is 1.18. To be able to use our tail
approximations, we have to take care of the change in the scale
parameter due to averaging. Assuming that P(βi > t) ≃ ct−α , a
standard result on convolutions (see e.g. Lemma1.3.1 in Embrechts
et al. (1997)) yields

P


1
n

n
i=1

βi > t


≃ cn1−αt−α.

Proceeding as above, we find t ≃ 6.31. Rescaling according to the
above formula then gives 6.31×0.037 = 0.23. The upper bound of
a two-sided confidence band at the 5% level is 1.18+ 0.23 = 1.41,
which is far below the value β = 2. A similar calculation yields
an upper bound of the two-sided confidence band at the 1% level
of 1.18 + 0.57 = 1.75, which is still not in agreement with the
Expectations Hypothesis β = 2.

We investigate the dependency structure of the data, both over
time and cross sectionally. From the correlograms for the slope
estimates and the squares thereof, there is no indication for the
level or the squares to be time dependent. We further investigate
the autocorrelation structure by estimating an AR(1) model for
the level and the squares, but find no indication that these slope
estimates are time dependent. Secondly, we look at the time
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structure of the per country residuals from the cross sectional slope
estimates, to see whether there is evidence for (time) dependency
in the noise. On basis of correlograms, ARMA and ARCH estimates,
there is again little or no evidence for a time structure in the
residuals. To conclude, it appears that there is little or no evidence
for dependency over time in the data.

Lastly, we also investigate the per period cross-sectional depen-
dency. Since several countries pursued similarmonetary policies at
the time (relative to the base country), cross-sectional dependency
would be consistent with the economic facts. From the cross-
section slope estimates we construct the matrix (across months
and countries) of residuals and the corresponding covariance ma-
trix is formed. Using the Anderson (1984, p. 434–437) χ2-based
test, the null of cross sectional independence is overwhelmingly
rejected.4 To conclude, while there is little or no dependency over
time, there is clear evidence for cross-sectional dependency. This
cross sectional dependence makes that large shocks, which stem
from the non-normal error structure, appear simultaneously in
several countries. As is explained in the theory section and the sim-
ulation study, this may be the cause for the high variability in the
small sample cross section slope estimates as depicted in Fig. 6.

6. Conclusion

The paper provides a theory for tail probabilities for the linear
regression estimator distribution in medium sized samples if the
multiplicative and additive error terms follow a heavy tailed
distribution. We show that even if standard moment conditions
such as the existence of the variance are satisfied, the usual
benchmarks based on central limit theory can be misleading.
The results hinge on relatively weak assumptions regarding
the stochastic nature of the explanatory variable. With additive
uncertainty we require that the joint density of the explanatory
variables is bounded in some neighborhood of the origin. A
restriction is the condition that the regressor be exogenous. On
the other hand, we allow for the possibility that the random
multiplicative noise component be correlated with the additive
noise term, and in this sense there can be correlation between
the economic explanatory part and the additive noise structure.
Moreover, both the noise and the regressor are allowed to be time
dependent.

It is shown that for a fixed sample size and if the perturbations
are regularly varying, the OLS regression coefficient estimator has
a tail probability which is the product of the tail probability of the
perturbations and the expected ‘kernel weight’. From this result
we obtain explicit expressions for the tail probabilities of the
distribution of the OLS estimator. These formulas are useful for
inference. In large samples the tail influence of the perturbation
term is lost by virtue of the central limit theorem. To derive these
results we started with a novel result on scaling properties of
products and ratios of regularly varying random variables.

A Monte Carlo study showed the importance of the alternative
assumptions of normally distributed versus heavy tail distributed
innovations. Regardless of whether the noise in the regression
is additive or multiplicative, there exists a clearly discernible
effect of wider spread of the OLS estimator in medium sized
samples, in contrast to the normal approximation and in contrast
to normally distributed noise. Dependency gives an additional kick.
The considerable deviations of the coefficient estimates from their
true values correspond well with our theoretical formulas.

The application to yield curve estimation demonstrates the
relevance of the theoretical results. Traditional slope estimates are

4 The estimation effects are neglected.

highly variable and clearly downward biased in comparison with
the theoretical value suggested by the Expectations Hypothesis,
but are not necessarily in conflict with more elaborate economic
theory that includes a liquidity premium. We focused on the
considerable variation over time of the coefficient estimates. A
thorough analysis of the set of cross country slope estimates
revealed that the estimated random components come from a
distribution with a regular varying tail. The heavy tail feature is
significant in the cross sectional estimates due to the small cross
section sample size and the cross sectional dependence. The more
extreme estimates seem to adhere well to our theoretical formulas
for the distribution of tail realizations.

We conclude that the theory seems applicable to economic data
andpotentially explains thewide variability of observed regression
estimates.
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Appendix

We give the proofs to Lemmas 3.2, 3.4 and 3.6.

A.1. Proofs to Section 3

We start with Lemma 3.2.

Proof. Assume first that the Zi’s are independent. If the Zi’s are
non-negative the result is standard; see Feller (1971, p. 278), or
Embrechts et al. (1997, Lemma 1.3.1 and Appendix A3.3). For
general Zi and Zj, i ≠ j, using the independence,

lim
x→∞

P(|Zi| > x, |Zj| > x)

G(x)
= 0.

Taking into account these calculations and assumption (7), we see
that the conditions of Lemma 3.1 are satisfied and so it follows that

lim
x→∞

P(Z1 + · · · + Zn > x)

G(x)
= c+

1 + · · · + c+

n ,

implying that

P(Z1 + · · · + Zn > x) = (1 + o(1)) (P(Z1 > x)
+ · · · + P(Zn > x)).

The case of the left tail P(Z1 + · · · + Zn ≤ −x) is analogous.

For dependent Z1, Z2 with α1 < α2, P(|Z2| > x) = o(P(|Z1| > x)).
Then similar calculations as above yield that the assumptions of
Lemma 3.1 are satisfied. �

We continue with Lemma 3.4.
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Proof. The fact that Z is regularly varying with index α follows
by a straightforward application of Proposition A.1 in Basrak et al.
(2002). The techniques used there also allow one to derive (9),
which relation we show in detail. LetM > 0. Then

P(Z > x) = P(Z > x, A1)+ P(Z > x, A2)+ P(Z > x, A3)

=: p1 + p2 + p3,

where

A1 =

|Y| ≤ M−1 , A2 =


M−1 < |Y| ≤ M


,

A3 = {|Y| > M}.

Then we have

p1 ≤ P(|X| |Y| > x, A1) ≤ P(|X| > xM).

Clearly, |X| is regularly varying with index α, and so

lim
M→∞

lim sup
x→∞

p1
P(|X| > x)

= 0. (31)

Recall from Breiman (1965) that for independent non-negative
random variables ξ , η such that Eηα+δ < ∞ for some δ > 0 and
P(ξ > x) regularly varying with index α > 0.

P(ξη > x) ∼ EηαP(ξ > x), x → ∞.

For p3 we have, using Breiman’s result, regular variation of |X| and
Lebesgue dominated convergence,

lim
M→∞

lim sup
x→∞

p3
P(|X| > x)

≤ lim
M→∞

lim sup
x→∞

P(|X| |Y| I(M,∞)(|Y|) > x)
P(|X| > x)

= lim
M→∞

E[|Y|
α I(M,∞)(|Y|)] = 0. (32)

By virtue of (31) and (32) the result must follow by a consideration
of p2. Indeed,

lim
x→∞

p2
P(|X| > x)

= lim
x→∞


M−1<|Y|≤M

P(Z > x |Y )
P(|X| > x)

P(dY)

= E


I(M−1,M)(|Y|)

d
i=1


c+

i E[Y αi I{Yi>0}] + c−

i E

|Yi|

α I{Yi<0}
 

.

(33)

In the last step of the proof we made use of Pratt’s lemma (see
Pratt (1960)) and Lemma 3.2. Now letM → ∞ in (33) to conclude
that the statement of the lemma is correct for P(Z > x). The case
P(Z ≤ −x) is completely analogous. �

The proof of Lemma 3.6 goes as follows.

Proof. Calculation shows that EY−α/2
t < ∞ if and only if for some

x0 > 0, x0

0
P(Yt ≤ x2/α)x−2dx < ∞. (34)

If the Xt ’s are i.i.d. we have

P(Yt ≤ x2/α) ≤ P


max
i=1,...,n

X2
i ≤ x2/α


= Pn 

|X | ≤ x1/α


≤ const xnγ /α. (35)

The function xnγ /α−2 is integrable on [0, x0] if nγ /α > 1, hence
(34) holds. Now assume that (X1, . . . , Xn) has a bounded density fn
in some neighborhood of the origin. We conclude from (35) that

P(Yt ≤ x2/α) ≤


max

i=1,...,n
|yi|≤x1/α

fn(y) dy ≤ const xn/α,

for sufficiently small x, and so we may conclude that (34) holds for
n > α. This concludes the proof. �

Next we give the proof of Proposition 3.9.

Proof. (1) We observe that
n

t=1

εtX2
t =

t
j=−∞

Zj
n

t=max(1,j)

ψt−jX2
t .

Write

ψj =

n
t=max(1,j)

ψt−jX2
t

n
s=1

X2
s

.

For fixed k ≤ nwe may then conclude from Lemma 3.4 that

P


n

j=k

Zjψj > x


∼ P(Z > x)

n
j=k

E[ψ+

j ]
α

+ P(Z ≤ −x)
n

j=k

E[ψ−

j ]
α.

Without loss of generality assume that k ≤ 1. Observe that

|ψj| ≤

n
t=1

|ψt−j|.

Then similar calculations as in Mikosch and Samorodnitsky (2000)
show that

lim
k→−∞

lim sup
x→∞

P

 k−1
j=−∞

Zjψj

 > x


P(|Z | > x)

= 0.

This proves the asymptotics for the right tail of ρn,ε . The asymp-
totics for the left tail of ρn,ε are analogous.
(2) The proof of the second part is analogous, making use of the
representation
n

t=1

ϕtXt =

n
j=−∞

γj

n
t=max(1,j)

ct−jXt ,

the moment condition (13) and, again, Lemma 3.4. �
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