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ABSTRACT
Standard risk metrics tend to underestimate the true risks of
hedge funds because of serial correlation in the reported returns.
2004) derive mean, variance, Sharpe
ratio, and beta formulae adjusted for serial correlation. Following their
lead, we derive adjusted downside and global measures of individual
and systemic risks. We distinguish between normally and fat-tailed
distributed returns and show that adjustment is particularly relevant
for downside risk measures in the case of fat tails. An empirical analysis
reveals that unadjusted risk measures can considerably underestimate
the true extent of individual and systemic risks for hedge funds.
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After two decades of strong growth, hedge funds have developed into a mature
and widely accepted asset class. On the back of relatively high historical returns
the hedge fund industry has enjoyed a near-continuous inflow of new money
until the credit crisis. Moreover, hedge fund risk levels are frequently reported
to be lower than those of the more traditional investments in equities. These
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performance characteristics of hedge funds have also attracted considerable
academic attentionE
One particular feature of hedge fund returns is their strong autocorrelation.

ieH (2001), [Agarwal and Naid (2004), and [Huang, Liechty, and Rossi

) demonstrate that this feature invalidates standard mean-variance analysis for
hedge funds. |G.atmans.lgc.LQ_andMa.kam¥| 004) argue that the autocorrelation
stems from the illiquidity of the assets held by hedge funds and the smoothing of the
returns because of reporting practices. Based on a moving average representation
of reported returns, they show how this process affects the Sharpe ratio (SR) and
beta in a standard single-factor model. As the smoothing lowers the variance
and the covariance (with the market index) but leaves the mean unaffected, the
standard risk measures tend to underestimate the actual risk (SR is overstated). In

©00d), this framework is used to evaluate the systemic risk posed by

hedge funds for the banking sector. [Bollen and Pool use this autocorrelation
structure to detect misreporting. Recently, M) and [Ted M)
use the algorithm of ) to unsmooth hedge fund
returns.

This article extends the lead taken by ©004) in
two dimensions. First,w ) consider two measures

of risk (SR and market beta) that can be defined as “global”, because all returns
are used to calculate them. We broaden their paper’s scope by evaluating three
downside measures of risk, two univariate, and one multivariate (or systemic), that
use only (part of) negative returns. There is considerable evidence from behavioral
finance that individuals do not treat the upside potential and the downside risk
symmetrically. Moreover, regulatory frameworks such as Solvency II and Basel III
focus on downside risk measures.

The second direction adds the distinction between light tails and heavy tails.
The measures considered bylGetmansky, Lo, and Makarod (2004) fully characterize
the risk aspects in the case that the noise is multivariate normally distributed, that
is, in the case of light tails. In practice, it is known that return distributions of most
assets are heavy tailed. An example of a heavy-tailed distribution is the Student’s ¢-
distribution. Such distributions exhibit hyperbolic or power-like decline in the tails,
whereas light-tailed distributions have exponential declining tails. Whereas the SR
and beta measures also apply in case of heavy tails (as long as second moments
are finite), the downside risk measures do respond quite differently to smoothing
depending on whether the returns are light or heavy tailed.

More specifically, apart from the univariate global SR measure considered by

1

(2004), we also investigate the value-at-risk (VaR) and
expected shortfall (ES) measuresﬁ The VaR and ES downside measures play a

200d);

For research on the risk and return characteristics of hedge funds, see

Goid); Gotl); and

2

‘ £00d); Fungetall @ood);
%ﬁm)

We acknowledfe that several of the performance metrics in this article are criticized (see e.g.,mm

or ). These measures can be gamed and have shortcomings when funds trade
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central role in the risk management practices of the financial sector and are also
sensitive to the type of tail behavior (light or fat) of the returns under consideration.
As for the multivariate risk measures, we examine the correlation coefficient p,
which is a global risk measure, and a multivariate measure that focuses on the
downside systemic risk. The latter measure reflects the amount of interdependence
between two or more returns deep into the joint tail loss area. It exclusively picks
up the extreme linkages in crisis situations. This measure we term as the extreme
linkage measure (ELM); itis explained in Section[L2Z2] The chart below summarizes
our investigation for both light and heavy tails.

Risk measures analyzed in the article

Scope
Dimension Global Downside
Individual SR VaR, ES
Systemic P ELM

After investigating how these risk measures are affected by the kind of
smoothing proposed by IGetmansky, Lo, and Makarov (2004), these smoothing-
adjusted risk measures are applied on two broad-based hedge fund indices for
the period between 1990 and 2013. We find that the smoothing-adjusted hedge
fund investment returns indicate levels of risk that can be considerably higher than
the risk measures based on reported returns. This finding applies in particular for
the downside risk measures.

Using the smoothing-adjusted economic risk measures is important for both
investors trying to determine the proportion to invest in hedge funds and for
investors constructing a hedge fund portfolio based on the relative risks of those
funds. Correct risk measures are instrumental in preventing overpaying for an
investment in hedge funds because its attractiveness has been overestimated.
Finally, the ELM results can be of interest for policy makers and regulators
who are concerned about the possible effects of hedge funds on financial
stability.

The article proceeds as follows. Sectionllmodels the impact of smoothing and
derives the adjusted risk measures. SectionRlpresents the empirical methodology.
In Section B} the adjusted risk measures are applied to two hedge fund indices.
Sectionflconcludes. For the sake of brevity, several details are provided in a separate

web appendix (Di Cesare, Stork, and de Vried014).

nonlinear contracts or engage in market-timing strategies. Alternative metrics exist. The purpose of this
article, however, is to analyze the existing framework of widely used performance measures and to extend

the work oflGetmansky, I o, and Makarod m). The analysis of other metrics is outside the scope of this

article.
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1 MODELING THE IMPACT OF SMOOTHING

We derive how smoothing affects the risk measures. Following
|G_etmansk¥._LQ._an_dMa_kaLoy| (]20_(14]), the reported or observed returns are
considered to be a weighted average of the fund’s actual returns over a number
of the most recent periods, including the current period. This assumption turns
the observed returns into a moving average of the actual returns. Consider two
hedge funds (indices) with actual returns Xj; and X, ; in period t, which are
independent and identically distributed (i.i.d.) through time (but they may be
correlated with each other). The actual returns cannot be observed directly and
the reported returns S; ; are governed by the following MA(K) process

K
Sit=) OikXit ks )
k=0
gi,ke[o’lL k=0,...,K, (2)
K
Zei,kzl’ (3)
k=0

for i=1,2. We refer to the MA coefficients 6;  as the smoothing coefficients.

The model in Equations (@) to @) is very general but rich enough to study the
impact of smoothing on individual risk measuresfl To analyze the consequences
on systemic risk measures we introduce the source of dependence by means of the
single-factor model. Thus, if R; is the market return in period f and if €1 ; and &>
are idiosyncratic risk factors in period ¢, then

Xi=PBiRi+eiy, 4)

fori=1,2. For the sake of the presentation, we assume thatboth g; and $, are strictly
positive. Moreover, Ry, &1, and ¢ ; are i.i.d., with distributions that are specified
below. éhe model can be generalized to the case in which there are multiple market
factors

1.1 Smoothing Effects on Univariate Risk Measures

We study the VaR and ES measures in the case of light tails and heavy tails. The
light tail case is focused on the normal distribution, which is the standard fare in
finance. It provides a benchmark against which the case of heavy tails is judged.
We first clarify the concept of a heavy tail.

3We refer tongtmans]gy_Lg_han_d_Makam] @, p- 545-547) for a detailed exposition on why an MA(K)

model is appropriate

4The corresponding equations are reported in Section 1 of[Di Cesare, Stork, and de Vried m)A
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A distribution is said to be (symmetrically) heavy tailed if it is regularly varying
at infinity, that is to say, the tails of the distribution satisfy

F(-tx) . 1-F(tx) _,
P F(—1) _tlggol—ilf(t)_x ’ ©)

for all x>0 and some « > 0. The tail index o determines how heavy the tails are, as
only the moments upto « are bounded. For example, it is readily verified that the
Student’s t-distribution with v degrees of freedom has regularly varying tails with
a=v. Moreover, we will assume that the following first-order expansion applies

P(X >x)=Ax""+o(x"%), (6)

where A > 0. The A is not necessarily constant but can be a slowly varying function,
that is, lim;, o A(tx)/A(t)=1 for any x>0. Somewhat loosely formulated, this
definition means that to a first order at infinity the distribution follows a Pareto
distribution. Many popular distributions satisfy Equations @) and (@), such as the
Student-t and infinite variance sum stable distributions.

To derive the implications of the MA(K) process for our risk measures, we need
to know the distribution of the convolution of the random variables in Equations
(@ to @). How to do this for the normal distribution is commonly known as the
square root rule. For example, assuming that the market factor R~N(ug,or) and
the idiosyncratic factor & ~ N (¢, 0 ) in Equation @), it follows (omitting subindices
i whenever there is no possible confusion)

X~N<ﬂmz+ue, (ﬁzol%w?)m). )

Such a simple rule does not generally exist for the case of heavy-tailed
distributions. For our purposes, however, it suffices to know what happens to the
tail probabilities under summation, which is a considerably simpler problem. To
derive our results, we make use of the celebrated convolution theorem by

, ch. VIIL8). The flavor of the convolution theorem is demonstrated for the
case of the single-factor model from Equation @). Suppose, for example, that both
the market factor R and the idiosyncratic risk ¢ have a Student’s t-distribution with
v degrees of freedom and hence satisfy Equation (). It then holds that

P(X >t)
lim —————=1. 8
o (BY+ 1A ®)
It transpires that one can just add the marginal tail probabilities. To a first-order,
sufficiently deep into the tail all probability mass in the plane concentrates along
the axes and this property determines the sum. If the tail indices are unequal,
then the tail with the lowest index dominates the sum. Note that the convolution
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changes the scale factor, but leaves the power v unaffected. In other words, if
one studies the convolution of two independent heavy-tail distributed random
variables with the same tail index at large quantiles, it suffices to take the sum of
the scales divided by the quantile to the power of the tail index.

With these preparations at hand, we turn to the specific measures and
investigate the effects of the moving average feature of reported returns.
[Getmansky, Lo, and Makaroy (2004) already find that SR is overstated when hedge
fund returns are smoothed (provided the variance is finite). Next, we assess the
downside risk measures VaR and ES.

1.1.1 Value-at-risk. VaR is probably the most widely used univariate measure
in risk management (see, e.g., ), so it is worth studying how it is affected
by the presence of autocorrelation in hedge fund returns.

For the random variable Y; with a continuous distribution, the VaR at the
confidence level 1—p is defined implicitly by

P(Yi>VaR(Y;.p))=p. or VaR(Y;.p)=¢;'(1—p), €)

where goil () is the inverse of the cumulative density function of Y; evaluated at x.
Note that the VaR usually is a loss return and hence a positive number. Therefore,
we focus on the right tail of the loss distribution.

1.1.1.1 Normal distribution. Let VaR(S,p; N) denote the VaR at the confidence level
1—p for the reported return S;. Under the assumption that the actual returns X;
follow the normal distribution X;~N(ux,0x), we have from Equations (@) to (@)
that Sy ~N(us,0s), where

1/2

K K
Ms=<29k>l/«x=ux and Us=<29;3> ox <ox. (10)

k=0 k=0

Since

(11)

p:P(St>VaR(St’p;N)):1_¢(VaR(StaP;N)—MS)’

as
where ®(x) is the standard normal cumulative distribution function evaluated at
x, the VaR is given by

VaR(St,p; N) =050~ (1—p)+pus. (12)

Given that ug=ux and og <oy, the VaR calculated on the smoothed returns,
VaR(S;,p; N), is always smaller than or equal to the VaR calculated on the actual
returns,

VaR(X;.p:N)=o0x® ' (1—p)+sux. (13)
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In particular, from Equations {I0), (I2), and (I3) we have the following:

Proposition 1:  If the actual returns X; are i.i.d. with a normal distribution, then the VaR
of the reported returns is related to the VaR of the actual returns as follows

1/2

VaR(St,p;N)—1is 05 (= 0
VaR (Ko piN) s o~ \ 2=k (9

Under the assumption of a normal distribution, the presence of autocorrelation
in the actual hedge fund returns reduces the reported VaR by the reduction in the
volatility of the returns. The square root rule applies again.

1.1.1.2 Heavy tails. Suppose now that the distribution of X; is heavy tailed as in

Equation @) and let VaR(S;,p; H) denote the VaR at confidence level 1—p for the

case of heavy-tailed distributions. Invoking Feller’s convolution theorem gives
P(S¢ > VaR(S;,p; H))

im
pi0 (ZK 9“) VaR(S;,p: H) ™
k=0Y ) VX t>Ps

=1, (15)

where yx is the scale factor of X; (i.e., the parameter A in Equation@). Upon first-
order inversion, for small p approximately

K 1/a
VaR(Sy,p; H) ~ (yx Zo,f) . (16)
P
Similarly, one shows that for the actual returns
1/
VaR(X;, p; H) ~ <”?X) . 17)

Note that yx > 6y is the scale factor of S;, which can be estimated from the data.
Combining Equations (@) and (I7) we obtain the following:

Proposition 2:  If the actual returns Xy are i.i.d. with heavy tails as in Equation (@), then
Var(S.pH) (&)
lim SARCEOPID _ (§hga) (18)
pl0 VaR(Xe,p;H) - \i=
Given that Equations @ and @) imply Y ;67 <1 for any a«>1, the VaR

calculated on smoothed returns deep into the tail area is always smaller than or
equal to the VaR calculated on actual returns. The latter condition just requires that
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the mean is bounded. In case of the Cauchy distribution, which has « =1, the VaR
calculated on smoothed returns is equal to the VaR calculated on actual returns.
As the first derivative of (3" 6{)/* with respect to the tail index « is negative,
the presence of autocorrelation affects the smoothed returns’ VaR relatively less
when the reported return distribution has fatter tails (smaller «). In general, for any
given value of the tail index « > 1, the VaR of the smoothed returns VaR(S;,p; H) is
minimized when the smoothing coefficients 6y equal 1/(K+1) for all k. In this case,
the current and past true economic returns are equally weighted and together make

up the reported returns. The ratio of VaR(S;, p; H) to VaR(X;,p; H) equals (K+1) 2
For K=2 and « =3 this finding implies, for instance, that the reported VaR could
be equal to less than half of the true VaR.

Finally, note that the correction term in Equation (8) for the heavy tail case is
always smaller than the correction term in Equation ([4) for the normal case as long
as a >2 (i.e., finite variance). In other words, the impact of smoothing is usually
larger in the heavy-tail case than in the normal case.

1.1.2 Expected shortfall. For a given loss return threshold v, the ES measure
is the conditional expectation

ES(Y¢.y)=E[Y:|Y; > y]. (19)

In general, the ES measure is difficult to compute for the convolution induced by
the MA(K) process. Fortunately, for the normal case and the heavy tail case at
sufficiently large y, we have explicit results.

1.1.2.1 Normal distribution. Assume that actual returns X; have a normal distribu-
tion X; ~N(ux,o0x), then ES equals

Ooxe_%<xj’%)2dx Us¢(y?5>
ES(St,y;N) =Y o= y_sﬂs +us. (20)
/;Oe‘f( ) gy 1-9(55)

It can be shown that the first derivative of ES in Equation @0) with respect to
os is positive so that, given that o5 <o, the ES calculated on smoothed returns is
always lower than or equal to the ES calculated on actual returns. Furthermore,
when y equals the VaR that corresponds to confidence level 1—p, we derive

_l(VaR(St,p;N)—u.S )2
Use 2 ag

_|._
o ns
e 3@ 1)

T pVam e (1-p)

ES(St, VaR(S,p; N); N) =
(21)

(VaR(St.p; N)— us) +us-
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The last equation shows that the ES is proportional to the VaR:

Proposition 3:  If the actual returns X; are i.i.d. with a normal distribution, then ES of
the reported returns is related to ES of the actual returns as follows

1/2

ES(S:. VaR(S:.piN)iN)—us _ s (ng) 22)

ES(X;, VaR(X,p; N); N)—

As in the case of VaR, we find that after the correction for the mean, the
smoothed ES is proportional to the actual ES. The presence of autocorrelation in
the reported hedge fund returns reduces the estimated ES, and the reduction is
proportional to the ratio of the two volatility estimates.

1.1.2.2 Heavy tails. Under the same assumptions as for the VaR, we have that

P
lim (5¢ > x)

K—:l. (23)
X—00 (Zk:Oelg)yXx_a

If the distribution function is monotonic in the tail area, it holds fur-
thermore that the density satisfies the following asymptotic expansion (see

[Bingham, Goldie, and Teugeld[1987)

lim < fsi ()
x—)ooa(zkzoo’?)yxx—a—l

—1. (24)

Hence, for a sufficiently large threshold y and if «>1, the ES measure is
approximately equal to

a(Zf=09f>yXfy°°xx*"‘*l dx
ES(St,y; H)~ = y. (25)

(Zf:o O ) yxy~* a1

Equation 25) shows that the ES is independent of the smoothing coefficients 6. The
reason for this independence is that the smoothing coefficients affect the expected
value of the exceedances and the probability of exceeding the threshold in the
same proportion. As a result, both effects cancel out. The ES is therefore invariant
to smoothing of the returns in the heavy tail case.

For y=VaR(S;,p; H), we obtain from Equation (25) that

ES(S;, VaR(Sp.p; H); H) ~ — T VaR(S;.p: H). (26)
o
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The properties of the ES exactly match those of the VaR. In particular, we have:

Proposition 4:  If the actual returns Xy are i.i.d. with heavy tails as in Equation (@), then

1/a

(27)

ES(S;, VaR(Sy,p;H); H) = o
p10 ES(X;, VaR(Xp.p: H) H) 2.0

k=0

This last result shows that ES calculated on smoothed returns is always smaller
than or equal to ES calculated on actual returns. This result mimics the one found
for the VaR metric in Equation (I8).

To conclude, both in the case of normally distributed returns and in case
of heavy tails, the VaR and ES measures are proportional to each other and are
similarly affected by the smoothing because of reporting.

1.2 Smoothing Effects on Multivariate Risk Measures

In this subsection, two systemic risk measures are investigated.
|G£tma.nsk¥hLQ._an.d_Ma.kamsz| 2004) ) already consider how the estimate of
the market beta for a single-factor model is reduced due to smoothing. As their
results apply for the normal case and the heavy tail case as long as o >2, those
results are not reproduced here. Instead, we focus on the correlation coefficient p
and the downside systemic risk measure ELM.

1.2.1 Pairwise correlation. We investigate the effects of smoothing on the
correlation between the reported returns (S ¢,S52,+) of two hedge funds under the
assumption that actual returns (Xj ¢, X s) have a correlation equal to p(X1,Xp) if
t=s and zero otherwise. Moreover, the variances of the actual returns are given by
o1 and o3. In this general framework, only the second moments of the returns are
required to exist. Standard results and the Cauchy-Schwarz inequality imply:

Proposition 5:  Assume that the actual returns (Xit,X2s) have bounded second
moments and correlation equal to p(X1,X2) if t=s and zero otherwise, then the correlation
coefficient of the reported returns is related to the correlation coefficient of the actual returns
as follows

Y itk
((Zf:o@z,k) (lef:oezz,k))

p(51,52)= 772 P(X1,X2) = (X1, X2). (28)

Note that the correlation calculated on reported returns p(S1,S2) equals the
correlation calculated on actual returns p(X1,X>) when 6; =6, for all k, that is
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when the actual returns of the two hedge funds show exactly the same pattern
of autocorrelation. Except for this exceptional case, the correlation calculated
on reported returns underestimates the true correlation calculated on actual
returns

1.2.2 The extreme linkage measure. The ELM is a nonparametric measure

of dependence based on extreme value theory (EVT). It was introduced by

(@})D and has been applied in several empirical studies of systemic risk (see, e.g.,
ied2004;iStraetmans, Verschoor, and Wolff2008).

The ELM is defined as the probability that two hedge funds face losses above a

threshold s, given that at least one of these faces a loss in excess of that same

threshold s

]P>(5]JL >38S, SZ,t > S)

EEM(S115269= 17551 =555, 29)°

(29)

For theoretical purposes, the ELM is evaluated in the limit as s tends to infinity
ELM(S1,¢,52,¢) = lim ELM(S1,4,52.¢35). (30)
55— 00

EVT then shows that the value obtained has relevance at finite levels, as long as s
is very large, since the tail shape of the distribution approaches the Pareto term in
Equation (@) in a smooth manner (see, [Balkema and de Haan[1974).

The ELM also indicates the expected number of hedge funds that are stressed,
n, given that at least one of the hedge funds is stressed, minus one

P(S1,t>5)+P(S2,¢>5)
1—P(S1,+<5,52,+ <9) (31)

=14ELM(S1.+,52.+:5).

Enn>1]=

In fact, the conditional expectation measure E[n|n>1] also has the advantage that
it can be easily extended to higher dimensions (1 > 2).

1.2.2.1 Normal distribution. Assume that X;; and X, ; are multivariate normally
distributed with correlation p and standard deviations o1 and o;. To derive ELM,

51f the smoothing coefficients were allowed to be negative, there could also be the extreme case in which
25:0 01, k02, k=0, so that p(S1,t,52,1) =0 irrespective of the value of p(Xy t, X3 ). Hence, reported returns
would always appear to be uncorrelated even if, for example, the correlation between the actual returns
were equal to one.
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we adopt the proof of m (960). Note that, by elementary manipulations

P(X1,t>5)+P(Xp,>5)
1-P(X1,r<5,X2¢<5)
_ 1
- 1 _ P(X]Y[>S,X2wt>s) (32)
P(Xl‘t>s)+P(X2Y[>S)
1

<
1 P(X1,1+Xp,>2s)
]P’(Xl‘t>s)+P(X2J>S)

1+ELM(X1 ¢, Xp.458) =

as the line Xj;+ X5 ;=2s cuts the plane (X1 ;>s,X>;>s) from below. Note that
(X1,64+X2,t) /2 has variance (012 +(722 +20102p) /4, which is strictly smaller than
max(crlz,azz) as long as p #1 or o1 #02.

The classical Laplace tail expansion of a standard normal distribution &(s) with
density ¢(s) holds that 1 —®(s) = ¢(s)/s for large s. It then follows that

P((X1,i+X21)/2>5)

-0, 33
00 P(X1 ;> 8) + P(Xa ;> 5) (33)

as the rate of the exponential decay of the density of the sum (divided by two),
dictated by the inverse of its variance, is greater than the rate of the exponential
decay of at least one of the individual probabilities (one speaks of asymptotic
independence). Hence, ELM(Xj ¢, X2 t) =0. As the proof does not depend on the
particular values of the correlation and variances, it immediately follows that
ELM(S1,4,52,¢)=0 as well, as long as p(51,52) #1 or the variances of the reported
returns of the two hedge funds are different. Note that Equation 28) implies that the
correlation between smoothed returns is always smaller than one when 0; x #6, k
for at least one k. In summary:

Proposition 6: If actual returns (X1, Xo ) are i.i.d. and normally distributed, with
correlation p and standard deviations o and o>, then

1andELM(S1+,524)=1, if p=1,01=02,
O k=0 forall k
ELM(X1,t, X2.)={ 1andELM(S1.4,52.1) =0, if p=1,01=03, (34)
01,k # 0o k for some k
0andELM(S1.+,52,4)=0, otherwise.

For light tails, the ELM equals zero for both actual and smoothed returns in all
relevant cases, and thus is uninformative. This outcome is in sharp contrast with
the case of heavy tails.

The ELM is not affected in case the copula of the joint distribution of variables
S1,+and Sp ¢ implies asymptotic independence. That result holds for the multivariate
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normal, but also for multivariate exponential distributions. Per contrast, as we show
below, if there is asymptotic dependence, the ELM may be affected. Insofar as
the systemic risk measure presumes thin tails, for example, normality of returns,
systemic risk in the sense of multiple crashes occurring at the same time are
very unlikely. For example, LTCM had a risk management system built on the
multivariate normal distribution and hence movements in multiple markets were
attributed a zero probability. Nevertheless, the Russian and Asian crises combined
into one event. We refer to m M) for an excellent discussion of the LTCM
case, and the hazardous assumption of multivariate normal returns.

1.2.2.2 Heavy tails. In addition to the model given by Equations (1) to () we now

make the further assumption that the single-factor model in Equation @) applies.

This is a natural way to introduce dependence between two hedge fund returns.
Assume that Ry, €14, and €3 ¢ are heavy tailed, so that

P P P
fim TR PEL>S) g Pleai>s) g (35)

S—>00 )/RS_O‘ $—00 ysls—“ S—>00 yfzs_a

where the scale parameters yr, y:,, Ys, are strictly positive constants. For values
of the threshold s, high enough such that Feller’s theorem provides a good
approximation for the convolution of the random variables, we have

P(X;t>8)= (B YR+ Ve:)s ™%, (36)
1—P(X1,t <5, X0t <) (Vey + Ve, + (max(B1, B2))* vr)s . (37)

The first expression in Equation 6) is a straightforward application of Feller’s
theorem as explained in Equation (8). For the second expression in Equation (7),
notice that the two idiosyncratic risk factors and the market risk comprise the
three independent univariate random variables that span the space of X; and X>.
The boundary of 1 -P(X1,; <s, X5 <s) is a pyramid-shaped figure with respective
boundaries of ye,57%, ye,5~%, and max(B1, f2)"yrs~®. Summation then yields the
right-hand side of Equation (7).

From Equation (3I) we have

ELM(Xl,tyXZ,t)= /31 YR+ Ve +132 VR+VZ 1
Vey + Yer + (max(ﬂl P ,82)) YR (38)
_ (min(B1.B2))" vr
Yer + Ve, + (max(lgl s ,32))a YR
For the actual hedge fund returns (S1 ¢, S2,¢) the following equations apply:
K K
P(Si>5)=P(Xit>5) ) 0% =B vrR+Ve)s Y 0% (39)

k=0 k=0
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K

1-P(S1:<x,52:<x)= Z(Qﬁkm +05 1 Ve, + (max(B161 «, ﬁ292,k))a)/12>57°’, (40)
k=0

so that

(B YR+ Ver) Ckmo 05+ (BS YR+ Ver) iz 05
ELM(S1 4, 52.1) = — ) Lo 01+ (B e) k092 _1

Yoo (Gft,k Yer 05 1 Ve, + (max(B161 k. B262.4))" VR)

B S ko (min(B161 k. B262.4)) “ VR
=— )
ko (65 Vey 05 ve, + (max(Br61 x, B262.k))* VR)

(41)

Note that Equation @) simplifies to Equation 38) when both of the hedge
funds’ actual returns are smoothed in exactly the same way, that is, when 61 y =6, &
for all k. In this case, as in the pairwise correlation, the measure of linkage calculated
on reported returns is equal to that calculated on actual returns.

The previous sections show that the presence of autocorrelation reduces SR,
VaR, ES, and pairwise correlation, both in the case of normally distributed returns
and in case of heavy tails. In the case of heavy tails, we have the following
corresponding result for ELM (proven in Appendix[AJ):

Proposition 7:  Suppose that actual hedge fund returns (Xi;,Xo:) have the same
market exposure as 1 = pp = . Moreover, reported returns (S1,¢,S2.¢) both follow MA(K)
processes. Then, the ELM based on reported returns is lower than the true ELM if not all
smoothing coefficients are equal.

However, if market betas of the hedge funds are sufficiently different, then
ELM of smoothed returns can be larger than ELM of true underlying returns. To
show this possibility, consider the case in which the scale parameters yr, ys,, vs, all
equal one and B16 x < B0,k for all k. In this case, Equation @Il implies

K
BT 2 k=007'x B

K K = K pa
k=001'k

ELM(S1,t,52,1) = (42)

Equation @2) shows that ELM depends on the ratio Y65, /Y65, The presence of
autocorrelation can either increase or decrease the estimated ELM as compared with
the no-smoothing case when 61 =6, o =1 and 6, y =6, =0 for k #0. Therefore, we
have:

Proposition 8:  If the factors of the market model for two series of returns exhibit heavy
tails as in Equation (@), then it is not possible to establish a priori the impact of smoothing
on the ELM of the two series.
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In summary, if the market betas of the hedge funds are very similar, then it
can be expected that the reported returns induce a lower measure of systemic risk
than is factual. However, in general, the sign of the impact of smoothing cannot be
established a priori for ELM and the smoothing coefficients must be estimated to
determine in which direction the reported returns bias the systemic risk measure.

2 EMPIRICAL METHODOLOGY

The theory developed in Section[lis applied empirically using data from Hedge
Fund Research (HFR). We use HFR’s equally weighted total return indices
denominated in U.S. dollars for the Equity Hedge and Event-Driven indices (see
www.hedgefundresearch.com). Monthly returns across the period January, 1990 to
August, 2013 are used, which amounts to 284 months in total

The approach described above for individuals hedge funds does not extend
immediately to indices because of the issues arising from the aggregation of stochas-
tic processes that exhibit some dependence between each other. Nevertheless, the
statistical properties of hedge fund indices oftentimes are quite similar to those of
individual hedge funds. In Appendix[A2] we report the results for a three-fund toy
index and show that when our top-down approach is applied to this index it yields
results that are similar to a bottom-up-based methodology in which the individual
fund returns are unsmoothed before composing the index returns. Moreover, for
indices it is easier to find longer time series and analyze the changes over time of
the risk measures.

2.1 Estimation of the Smoothing Coefficients

In this subsection, the smoothing coefficients 6y are estimated. Before doing this, we
first inspect the raw returns data and their squares for their autocorrelation prop-
erties. We find that the returns of both indices exhibit significant MA(2) behavior.
Following EﬂmnsbLLQhand_Ma]gamzl (IZQ_OA), we apply a maximum likelihood
estimator (MLE) to the MA(K) smoothing model described in Equations (@) to @),
with K =2, to obtain efficient estimates of the impact of smoothing on VaR, ES, and
pairwise correlation. In our numerical procedures, X; is not required to be normally
distributed, as in Eﬂmms]gLLQhand_MakaImzl ©004). We can still exploit the
asymptotic normality of the MLE, though (cf. paragraph 8.8 in i

).

For ELM in the heavy-tail case a single-factor model is assumed. In this case,
we obtain efficient estimates of the smoothing coefficients 6y and the sensitivity of
the hedge fund index returns to the market index returns g by applying a MLE to

6More details about the dataset are reported in Section 2 ofIDi Cesare, Stork. and de Vried m).
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Table 1 Estimates of the smoothing coefficients.

General framework Market model
Investment strategy éo 51 éz éo él éz ﬁ
Equity hedge 0.768 0.161 0.071 0.794 0.126 0.080 0.549
(0.054) (0.037) (0.042) (0.035)  (0.028) (0.029) (0.037)
Event-driven 0.689 0.248 0.063 0.710 0.216 0.074 0.430
(0.046)  (0.029) (0.037) (0.030) (0.023) (0.026)  (0.029)
S&P 500 0.947 0.067 -0.014 1.0000 0.000 0.000 1.000

(0.078)  (0.052)  (0.057)  (0.000) (0.000) (0.000) (0.000)

Maximum likelihood estimates based on monthly log-returns for the period January 1990 to August
2013. Standard errors are reported in parentheses. The general framework refers to the MA(2) smoothing
process of Equations (@ to ). The market model refers to the linear single-factor model of Equations ()
to @, with the S&P 500 total return index used as market factor.

the model described in Equations () to @), with K=2. We use the S&P 500 index
as the underlying factor in the estimations.

Table [ reports the estimated smoothing coefficients for the two indices and
the S&P 500 index using both the more general framework and the market model.

The results of both methods are similar. We glean from Table [ that the
estimated smoothing coefficients 6; and 6, are statistically different from zero and
the parameter estimate 6 is statistically different from one for both hedge fund
indices.

Because hedge funds change their investment exposures frequently, it is likely
that the smoothing coefficients are not constant over time. As a result the calculation
of the risk measures could be affected as well. For this reason we also estimate the
smoothing coefficients using rolling windows of 60 months. Figures[land Rlreport
the estimates for both indices using, respectively, the more general framework and
the market model. We find that the coefficients tend to remain fairly stable across
the sample period 1995-2013. Furthermore, the resulting parameter levels are quite
similar across the two models.

2.2 Estimation of the Tail Index and Scale Parameters

To evaluate ELM from Equations (38) and @I, in addition to the smoothing
coefficients we need to estimate the tail index o and the scale parameters yg,
Ve, and ye,. We estimate the tail index using the standard il (o7 ) estimator

(see [lansen and de Vried [1991; [Embrechts, Kliippelberg, and MikoscH [1997)A The

scale parameters are estimated by approximating the probability P(X >x)~yx~*

"The Hill estimator is consistent in the presence of autocorrelation in the returns or their squares; see, for
example, Dreed 2008).
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Figure 1 Maximum likelihood estimates of the smoothing coefficients (6) of Equations () to (@.
The estimations are based on rolling windows of 60 months ending in the reference month.

by its empirical value, where x is the threshold return level above which the Pareto
approximation applies.

For the market factor Ry, the estimates of its tail index and its scale parameter are
obtained using the S&P 500 index data. Before the tail index and the scale estimates
for the residuals ¢; can be obtained, the residuals themselves need to be estimated.
To this end, we first calculate

il =5t — (ll +5 (éORt +61R;4 +9A2Rt72)) ) (43)

where [1, ,f?,éo,éLéZ are estimates obtained by the MLE described in the previous
section. Then, given that u;=0pe;+616_1+06264—1, the residuals are obtained

GTOZ ‘6 0010 UO Wepsloy 1eNSRAIUN SNWSeIT T /B10°S[euIno[piox0-084(/:dny oy papeojumod


http://jfec.oxfordjournals.org/

1.0
0.9
0.8

0.5
0.4
0.3

Estimate of coefficient

021
0.1,

0.0

D1 CESARE ET AL. | Autocorrelated Hedge Fund Returns 885

0.7 AN~
0.6 {5\

Equity hedge index

T\l . :
ol YN At : : : : o,

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

1.0
0.9
0.8
0.7

0.5

Estimate of coefficient

0.2

0.1

0.0

Year

0.6 fRti-

0.4
031

Event-driven index

i T ! S : ¥ : B : : : : ;
e N : : NS : : : et

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

Year

Figure 2 Maximum likelihood estimates of the smoothing coefficients (6;) and the market
exposure () of the market model described by Equations () to @). The estimations use the S&P 500
total return index as market factor and are based on rolling windows of 60 months ending in the
reference month.

recursively using

&=l — 01811 —0ré1-2) /. (44)

Given the relatively small sample size of only 284 monthly observations, we use
Hill plots to determine the number of higher order statistics of the loss distributions

to be used in the Hill estimator (see Emhﬂchi&_Klu.ppdhetg._an.deQs.d:mﬂj)ﬁ

8More details about the estimation techniques and the Hill plots are reported in Section 3 of

[DiCesare Stork and de Vried 01d).
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In all cases, we find that the tail index hovers around three. This value is similar
to the estimates provided by [[ansen and de Vried (1991) and [Hyung and de Vried

) for individual U.S. stocks. Given that the different estimates are close, the
tail index « is set to three for both the S&P 500 index and the residuals of the hedge
fund indices in the calculations that follow.

To estimate the scale parameters, we use a method analogous to the Hill plot,
but with the estimates of y on the vertical axis (fixing « at three). As the plots for
the tail indices turn out to be relatively stable for the top decile of the observations,
the scale parameters are set equal to the average of their estimates across those
extreme returns. For the scale parameters yg, ¢, and y,, these mean estimates
equal, respectively, 46.40,2.99, and 1.63.

Since the sample size of 284 monthly observations is somewhat moderate for
application of extreme value methods, we investigate the relevance of small sample
size and the efficiency of the estimates in Section 4 ofblﬁesamhsmrk,_and_dﬂnesl
M). In short, two main conclusions are drawn from a Monte Carlo simulation
analysis. First, the simulations show that the estimates for VaR and ELM are
essentially unbiased even for small samples. Second, the confidence intervals tend
to be fairly wide in small samples but they rapidly decrease in larger samples.
Hence, we conclude that our empirical estimates could be somewhat affected by
the small size of the sample but any potential bias is likely to be fairly small and
does not affect our main findings.

3 EFFECTS OF AUTOCORRELATION ON RISK MEASURES

In this section, we analyze how autocorrelation affects various risk measures.
As hedge funds frequently modify their investment exposures, the smoothing
coefficients may change over time as well. To capture these time-varying
changes, rolling windows of 60 months are used in most of the following
calculations.

3.1 Univariate Measures of Risk

In the case of SR, we find that the uncorrected risk measures for the equity
hedge and event-driven indices equal 0.90 and 1.07, respectively (see Table 1

Dl_Ceaar_e,_Sm_rlg._an_d_dﬂned |2m4|) After unsmoothing the returns using the
correct1on term reported in 004, Equation 32) and
our estimates of the smoothing coefficients in the general framework case (Table[I)
SRs drop to 0.71 and 0.78. Although the results are not directly comparable, it is
worth noting that this large change in SR exceeds the impact of unsmoothing found

by [Getmansky, .o, and Makarod 2004, Table 14)8
90ne difference between our empirical exercise anleﬂmans]gg_LQ_a_n_dMaka_r_QJ ) is that we use

data from HFR for the period 1990-2013 whereas the other authors use data from TASS for the period
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As for VaR, Figure [ reports the time series estimates of the reported and
uncorrected VaR(S¢,p) as well as the true and unobservable VaR(X;,p) for the two
indices, calculated both under the hypothesis that returns are normally distributed
(cf. Equations[[2and [[3) and assuming fat-tailed returns (cf. Equations[I&land [[7).

The analysis of Figure [3 yields a number of interesting conclusions. First,
the uncorrected and corrected VaRs often increase at the same points in time.
Apparently the dynamics of the two VaR series are fairly similar, although the
corrected VaR shows larger jumps, which is an intuitive result.

Second, the levels of the two measures of VaR are substantially different. On
several occasions the corrected VaR exceeds the uncorrected VaR by 50% or more.
For both indices the differences between the uncorrected and corrected VaR levels
increase substantially since the last months of 2008, after the collapse of Lehman
Brothers. The reason for the increased discrepancy is that the effect of smoothing
becomes stronger. Around this time the value of ¢y decreases (Figure[I).

Third, VaRs are markedly higher when hedge fund returns are assumed to be
fat tailed in comparison with the case of a normal distribution.

Finally, the adjustment factors in Equations {[4) and (I6) at the estimated
parameters values are not very different. Hence, the relative difference between the
corrected and uncorrected VaR series is almost the same for normal and fat-tailed
returns.

In this subsection, the focus is on the VaR metric. However, for the ES similar
conclusions can be drawn. The difference between the true unobservable ES and its
unreported counterpart mimics that of VaR (see Equation27). Thus, also for ES it
is highly relevant to adjust the fat-tailed hedge fund returns for smoothing effects.

The previous findings illustrate the relevance of our extension of the
[Getmansky, Lo, and Makarod (2004) paper. Their paper shows the importance
of adjusting the risk metrics of hedge fund returns for SR and beta. In those
cases the underlying distributions of the returns are irrelevant, as long as the
second moments exist. In practice, the returns of most assets are fat tailed (see
[[ans_en_an_d_d_dlrj_eé |1221|), and we show that the
M) framework is even more pertinent for those risk measures (VaR, ES, and
ELM) that depend on the specific distributions of the returns.

Finally, we note that return smoothing and autocorrelation may have other
causes as well, for example, skilfull trading, option-like payoffs, database biases,
return persistence, and misreporting by fund managers, as[Bollen and Pool (2009)
show. Not in all cases may the MA(K) representation be fully appropriate.
Using simulations, we investigate how robust the MA(K) framework is in the
presence of misreporting, when fund managers avoid reporting small negative
returns, like in [Bollen and Pool ). Simulations reported in Section 5 of
i i ) show that also in this case VaR estimates

1977-2001. Moreover, we run our estimators on indices whereas the other authors use data on individual
funds. Finally, our SR is calculated with respect to the U.S. dollar three-month Libor rate whereas the
other authors use a zero interest rate benchmark.
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Figure 3 VaR at the 99% confidence level under the assumption of normally and fat-tailed
distributed monthly returns. Percentage values. In the normal case, the uncorrected VaR (which
is based on reported returns) and the corrected VaR (which is based on the true unobservable
returns) are equal, respectively, to Equation (I2) and Equation {I3). In the heavy-tail case, the
corrected VaR is equal to Equation (@D; the scale factors for the reported returns are calculated
over the whole sample period and are equal to 5.42 and 3.59 for the equity hedge and the event-
driven index, respectively. Maximum likelihood estimates of the smoothing coefficients (6;) are
based on Equations (@) to @@ and refer to rolling windows of 60 months ending in the reference
month (cf. Figure[I).

strongly improve using the MA(K) framework of Equations (I) to @@). Introduction
of misreporting around the centre of the return distribution does not affect the
uncorrected VaR estimates much, and changes the outcomes to a smaller degree
than the correction for smoothing itself.
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Table 2 VaR as a function of the confidence level.

Process X; Process S

Confidence ~ Model Real Difference Model Real Difference
level VaR VaR (in percentage) VaR VaR (in percentage)
95.00% 2.80 2.35 19.15 2.16 1.87 15.30
97.50% 3.53 3.18 11.02 2.72 2.51 8.44
99.00% 4.80 4.54 5.62 3.70 3.55 4.12
99.90% 10.33 10.21 1.22 7.96 7.90 0.86
99.95% 13.02 12.92 0.78 10.03 9.98 0.55

The process X; is generated by simulating 10 million i.i.d. random variables having a Student’s t-
distribution with three degrees of freedom. The process S; is a moving average of X; with smoothing
coefficients equal to the general framework estimates for the equity hedge index reported in Table[l] The
model VaR is calculated according to Equations (I6) and (I7). The real VaR is the empirical percentile.

3.1.1 Accuracy of EVT approximations. The above results rely on EVT-
based methodologies, which hold in the extreme tails. In this subsection, we analyze
how well the method works for less extreme quantiles.

We provide numerical results for the case of VaR. More specifically, we run 10
million simulations of the random variable X;, t=1,...,107, under the assumption
that it is i.i.d. and Student’s t-distributed with 3 degrees of freedom. Thus, X; has
heavy tails with tail index o equal to 3 and scale parameter A equal to f(0; a)a@~D/2,
where f(0; @) is the density function of a Student’s ¢-distribution with o degrees of
freedom evaluated in zero (so that A=1.1 when « =3). Notice that the value of
the tail index corresponds to our estimate of the tail index for the two hedge fund
indices used in our empirical study.

Using the 10 million observations for X; and the general framework estimates
of the smoothing coefficients for the equity hedge index reported in Table [l we
calculate the process S;=) 0 X;_x. We then compare the empirical VaR of the
two processes X; and S; with the approximated analytical VaR (cf. Equations
and [I7) for confidence levels between 95.00% and 99.95%. Given the high number
of simulations, we are confident that the empirical VaR is indeed close to the true
unobservable VaR of the two processes.

TableRlshows that the model VaR is quite close to the real VaR for confidence
levels often used in practice (99% and higher), thus providing support to the accu-
racy of our methodology for higher ranging quantiles. However, as expected the
application of EVT techniques to lower quantiles is less effective. Results obtained
using the estimated smoothing coefficients for the event-driven index are qualita-

tively similar and are reported in Table 6 of [Di Cesare, Stork, and de Vried (2014).

3.2 Bivariate Measures of Risk

Next, we discuss how autocorrelation impacts on the bivariate measures of risk.
First, consider the correlation measure. Using the estimates reported in Figure[]
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Figure 4 ELM between the equity hedge and event-driven indices. The uncorrected ELM (which
is based on reported returns) and the corrected ELM (which is based on the true unobservable
returns) are equal, respectively, to Equation (88) and Equation {IJ). The smoothing coefficients (6%)
and the market exposure (8) of the market model described by Equations (I) to @) are estimated by
MLE; the estimations use the S&P 500 total return index as market factor and are based on rolling
windows of 60 months ending in the reference month (cf. Figure B). The tail index («) and the
scale parameter of the market factor (yr), estimated using Hill plots, are kept fixed at 3 and 46.40,
respectively. The scale parameters (y;) of the idiosyncratic terms of the two indices, estimated using
Hill plots, are kept fixed at 2.99and 1.63, respectively.

the correction term in Equation (28) ranges between 0.95 and 1.00, so that the impact
of smoothing on correlation is almost negligible Note that this correction term
can be interpreted as the raw correlation between the smoothing coefficients. Thus,
the similarity in the autocorrelation structure of the equity hedge and event-driven
indices implies that the estimated correlation is hardly affected by smoothing.
Given the presence of heavy tails, a better measure for the tail dependence is
ELM. Using maximum likelihood estimates over the entire sample period for the
smoothing coefficients 6y and the exposure to the market factor g from Table [I]
and the scale parameters y reported above, we calculate the two ELM measures
according to Equations (8) and @) and find that ELM(X ,X2,+)=0.30 and
ELM(S1,t,52,1)=0.22. Thus, the true measure of systemic risk is ~35% higher than
ELM based on smoothed returns (see Section 4 of IDi i
M) for some evidence about the estimation errors in these estimates).
Figure[ldepicts ELM estimates for the two indices based on rolling windows of
60 months. It shows that most of the time the smoothing-adjusted ELM significantly
exceeds its unadjusted counterpart, confirming the estimates based on the whole
sample. At times, the relative size of the adjustment strongly exceeds the 50%
estimation error that we found above. For instance, at the end of the sample period

10gee Figure 6 in[Di Cesare, Stork, and de Vried @) for the estimated time series of the correlation.
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the corrected probability of one hedge fund index being under stress given that the
other index is under stress is ~65% higher than the uncorrected probability.

Evidently, unsmoothing the observed hedge fund returns is especially
important when studying the extreme tail dependence. The large differences in
the behavior of the correlation and ELM estimates underscores the relevance of
our proposed adjustments.

4 CONCLUSION

Hedge fund returns frequently exhibit a strong degree of autocorrelation. As a
result, the economic risks of an investment in hedge funds are easily underestimated
and investment decisions can become biased. In this article, we extend the seminal
work of|G.eImans.ls¥.LQ.a.n.dMa.lsa.mx| (2004) on SR and market beta, by developing
a number of smoothing-adjusted downside risk measures and by allowing for
non normal fat-tailed return distributions. In particular, both individual risk
measures (VaRk and ES) and systemic risk measures (pairwise correlation and ELM)
are adjusted for the autocorrelation present in reported returns. We show that
the adjustment of the downside risk measure ELM for autocorrelation is more
important when returns are fat tailed than when they are normally distributed. A
hedge fund index case study reveals that unadjusted risk measures can considerably
underestimate the true extent of individual and multivariate risks. Finally, we note
that, although our risk-adjustment is applied to hedge funds only, our framework
can also be used to evaluate the risks of other alternative investment strategies.
Investments in real estate, art, collectible stamps, and other illiquid or opaque
securities are also known to exhibit strong serial correlation in the reported returns.
For these assets, conventional risk measures also need adjustments to correctly
reflect the true level of investment risk.

APPENDIX A

A.1 Proof of Proposition [7]
Given the equal betas, the true ELM(X 4, X7 ;) from Equation (B8) reduces to

BYyr 1
€1+V82+ﬂaVR ygéﬂ—i—l

ELM(X14,Xp4)= (A1)

The corresponding measure for the smoothed returns from Equation @I becomes

S o (min(@r x,62.0))"

ELM(S1,+,52.1) =
ﬁ“m Y keoff k+ﬂ°‘ Yo% k+Zk o(max(@r .02 )"
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Comparing the two measures ELM(X1 ¢, X5 ;) E ELM(S1.¢,S2.¢) shows

ygl Z et Vsz 29§k+2 max(fr k. 02.4))" Z

V k=0
(A.3)
Ve K
Lla 22 Z(min(OLk,Oz,k))a +Z(min(91’k,02’k))”‘,
Bvr = e
or
K
Z((max(elykﬁz,k))“ — (min(@lqkﬁz,k))a> Z
= (A4)

K K
Ver Z((min(@lykﬁz,k))a—Gﬁk)—f— Ver Z((min(el,k,elk))“—egk).

o o
B*vR (5 B*VR (=5

The elements on the left-hand side are all nonnegative (and some are strictly positive
if not all smoothing coefficients are equal), while the terms on the right-hand side
are all nonpositive (and some are strictly negative if not all smoothing coefficients
are equal). Hence, the left-hand side is always at least as large as the right-hand
side, or ELM(XLt,Xz’t)ZELM(SLt,SQ’t). |

A.2 Application to Indices

It is straightforward to show that a linear combination (an index) of individual
hedge fund returns that behave according to Equations (@) to (8) does not necessarily
satisfy the same equations, unless all hedge funds have the same smoothing
coefficients. In addition, hedge fund returns may show some interdependence,
as in Equation @), so that Feller’s theorem cannot be used directly to study the
stochastic properties of their linear combinations.

Thus, to unsmooth index returns properly one needs to use the properties of
individual hedge fund returns and their interdependencies. Here, we compare the
VaR of an index made of three hedge funds according to two methodologies. First,
we use the top-down approach developed in the article, that is we deal with the
index as if it were an individual hedge fund. In the second approach, we estimate
the VaR of the unsmoothed index using the individual fund characteristics and
their interdependence.

The three hedge funds are among the largest funds (in terms of assets under
management) with data available on Bloomberg, and with a relatively long time
series of data (Table [AJ). We have 209 monthly observations from January 1996
to May 2013. The “General framework” part of Table shows that the returns
are MA(2) for two funds and MA(1) for the third. Index returns display MA(1)
behavior.
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Table A.1 Main characteristics of the funds used in this Appendix.

Name Bloomberg ID Assets ($ bn) Strategy

Egerton European dollar EGNEDFI VI 3.3 Long short

Odey European ODYEDMI KY 1.6 Macro discretionary
LIM Asia multi-strategy LIMASFI VI 12 Macro discretionary

Table A.2 Estimates of the smoothing coefficients.

General framework Market model

Investment strategy éo é1 éz éo él éz ,3
Fund 1 0.744 0.103 0.153 0.785 0.081 0.134 0.361

(0.056)  (0.045) (0.043) (0.055) (0.044) (0.045) (0.052)
Fund 2 0.842 0.159 0.000 0.850 0.141 0.009 0.444

(0.076)  (0.048) (0.058) (0.064) (0.046) (0.047) (0.073)
Fund 3 0.645 0.225 0.130 0.671 0.214 0.115 0.163

(0.045)  (0.032) (0.037) (0.053) (0.033) (0.039) (0.035)
Index 0.771 0.162 0.067 0.797 0.136 0.068 0.326

(0.063)  (0.044) (0.049) (0.055) (0.040) (0.042)  (0.041)

Maximum likelihood estimates based on monthly log-returns for the period January 1996 to May 2013.
Standard errors are reported in parentheses. The general framework refers to the MA(2) smoothing
process of Equations (@) to (@). The market model refers to the linear single-factor model of Equations
(@ to @, with the S&P 500 total return index used as market factor. Monthly returns of the index are
calculated as simple averages of individual funds monthly returns.

The analysis of the Hill plots shows that a tail index equal to three is a
good estimate, both for the individual funds and the index. The scale parameters,
estimated as described in Section[2.2] are equal to 8.21, 16.55, and 1.27 for the three
funds and 4.03 for the index. Using these results, the VaR of the index at the 99%
confidence level is equal to 7.38% if reported returns are used (see Equation[I@) and
t0 9.55% if returns are corrected for smoothing (see Equation[[7). The corrected VaR
is thus almost 30% higher that the uncorrected measure.

We then assume that individual hedge fund returns behave according to
Equations (@) to @), so that they also show some dependence derived from the
common risk factor (which is assumed to be the S&P 500). The estimated smoothing
coefficients and market exposure are reported in the “Market model” part of
Table[A2] Using these parameters, we estimate the residuals of fund returns (see
Equation ) and their scale parameters, which are equal to 12.04, 26.15, and 3.74,
respectively. The scale parameter for the S&P 500 is 59.21.

For an equally weighted index of N hedge funds with returns that behave
according to Equations (@) to @), the correction term VaRCT to unsmooth the index
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returns is

YR (qu\]ﬂ ﬂn)a + Y on Ve

VaRCT = .
K N N o
D k=0 [J/R (Zn:1 5n9n,k> +D e J/s,ﬂn_k]

(A.5)

Using our estimates, the VaRCT is 1.24. By applying this VaRCT to the VaR
calculated on reported returns when the index is treated as if it were an individual
fund (7.38%), we obtain an estimate for the corrected VaR equal to 9.14%. This is
only ~4% lower than what we estimated previously (9.55%) using the top-down
approach.

Hence, estimating the correct VaR for an index by treating the index itself as
an individual fund does not seem to deliver results that are significantly different
from those obtained using the more elaborate procedure based on the estimation
of the parameters of each individual fund and the subsequent aggregation of the
results.

Received December 12, 2011; revised July 7, 2014; accepted July 15, 2014.
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