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a b s t r a c t

The dynamic properties of micro based stochastic macro models are often analyzed

through a linearization around the associated deterministic steady state. Recent

literature has investigated the errors made by such a deterministic approximation.

Complementary to this literature we investigate how the linearization affects the

stochastic properties of the original model. We consider a simple real business cycle

model with noisy learning by doing. The solution has a stationary distribution that

exhibits moment failure and has an unbounded support. The linear approximation,

however, yields a stationary distribution with possibly a bounded support and all

moments finite.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The dynamic properties of micro based stochastic macro models are often analyzed through a linearization around the
associated deterministic steady state. In the seminal paper on real business cycles (RBC) Kydland and Prescott (1982)
employed first order approximations to solve their dynamic, stochastic general equilibrium (DSGE) model. This method
has become highly popular in analyzing DSGEs. Campbell (1994) and Uhlig (1997) provide overviews on how to perform
the linearization of the dynamic micro based stochastic macro models. A number of papers has investigated the accuracy of
the log linear approximation, by looking at the deterministic part of the approximate solution. Tesar (1995) and Kim (1997)
prove that the loglinear approximation method may create welfare reversals, to the extent that the incomplete-markets
economy produces a higher level of welfare than the complete-markets economy. Jin and Judd (2002) therefore
recommend the use of second order perturbation methods. Sutherland (2002) and Kim and Kim (2003) have developed a
bias selection method which can be as accurate as the perturbation method, but which requires less computational effort.
The performance of the linear approximation in stochastic neoclassical growth models is studied by Dotsey and Mao
(1992), and more recently in Arouba et al. (2006) and Fernandez-Villaverde and Rubio-Ramirez (2005).

We contribute to this literature by showing how the stochastic properties of the approximate solution differ from the
equilibrium of the nonlinear model. In particular, we investigate the simplest model in the business cycle literature with
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fixed labor supply, total depreciation of capital and a log-utility function. To this we add noisy learning by doing. The
solution of the resulting stochastic difference equation has a stationary distribution which exhibits moment failure and has
an unbounded support. The first order approximation, however, yields a stationary distribution with bounded support and
all moments finite. Thus the linear approximation dramatically alters the stochastic properties of the model. We also
consider briefly an application from asset pricing with stochastic volatility.

This note is organized as follows. In Section 2 we analyze the RBC model and we show that while the exact solution of
the model for the log of capital follows a stationary distribution with unbounded support and exhibits moment failure, the
approximation may nevertheless have bounded support and all moments finite. Section 3 further discusses the effects of
linearization in the capital asset pricing model with changing conditional volatility of the ARCH variety. Section 4
concludes.

2. Application on the real business cycle model

Log-linearization is a well known method for solving business cycle models. It has its pros and cons, which are usually
discussed in a deterministic setting. We join this literature by showing how linearization may change the stochastic
equilibrium behavior of the solution of a dynamic RBC model.

The environment of the basic RBC model with fixed unitary labor supply and noisy learning by doing is as follows:

1. The production function is Cobb–Douglas Yt ¼ Iat K1�a
t , where I is technology and K is capital.

2. With full depreciation, the next period capital equals the current period’s savings: Ktþ1 ¼ Iat K1�a
t �Ct .

3. The representative agent expected utility is: U ¼ Et
P1

i ¼ 0 bilogðCtþ iÞ

h i
.

4. Technological progress stems from learning by doing: Itþ1 ¼ftþ1Yetþ 1
t , where ft 40 and et are random variables

independently distributed with mean f and e, respectively. The learning by doing effect stems from the aggregate
production level. This externality is not taken into account by the individual consumer when planning his consumption
pattern.

5. The gross rate of return on a one period investment in capital Rt + 1 equals the marginal product of capital:
Rtþ1 ¼ ð1�aÞðItþ1=Ktþ1Þ

a.

This special case of a stochastic dynamic general equilibrium model with full depreciation of capital and log utility
function admits an exact solution. The first order condition for utility maximization is: 1=Ct ¼ bEt½ð1�aÞIatþ1K�atþ1=Ctþ1�. In
order to solve the system

1

Ct
¼ bEt

ð1�aÞIatþ1K�atþ1

Ctþ1

� �
ð1Þ

Ktþ1 ¼ Iat K1�a
t �Ct ð2Þ

Yt ¼ Iat K1�a
t ð3Þ

Itþ1 ¼ftþ1Yetþ 1
t ð4Þ

we guess the policy function

Ct ¼ mIat K1�a
t ð5Þ

Inserting (5) in (1) and using the equation for the capital accumulation process (2) determines the constant m¼ 1�bð1�aÞ.
Subsequently substitute (5) and (3) into (2). This shows that the log of capital kt +1 satisfies1

ktþ1 ¼ logbð1�aÞþyt ð6Þ

Transform (4) into logs

itþ1 ¼ logftþ1þetþ1yt ð7Þ

Advancing (3) one period, taking logarithms as well and inserting (6) and (7), we obtain the first order stochastic difference
equation for log income:

ytþ1 ¼ ð1�aÞlogbð1�aÞþalogftþ1þðaetþ1þ1�aÞyt ð8Þ

This difference equation can be conveniently summarized as

Xt ¼ AtþBtXt�1; ð9Þ

ARTICLE IN PRESS

1 In this section capital letters stand for level values and small letters for log transformed variables.
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where At and Bt are i.i.d. random variables, with

At ¼ ð1�aÞlogbð1�aÞþalogf

and

Bt ¼ aeþ1�a

Kesten (1973) provides a characterization of the stochastic steady state of the process (9), given certain conditions. One
important property of the solution is that the tail of the stationary distribution may be asymptotic to the tail of a Pareto
distribution, see the fourth claim in Theorem 1 below. Thus the stationary distribution is characterized by moment failure,
even though the innovations may not exhibit this property; e.g. are bounded or exponential. The following theorem
collects the full statement of Kesten’s (1973, Theorem 5) theorem:

Theorem 1 (Kesten). Consider the first order stochastic difference equation

Xt ¼ AtþBtXt�1

where (At,Bt), tZ1, are independent and identically distributed with absolutely continuous distribution functions.

Suppose there is a k40 such that, E½logjB1j�o0, E½jB1j
k� ¼ 1, E½jB1j

klogþ jB1j�o1, 0oE½jA1j
k�o1.2 Then the following hold:

1. The equation X1 ¼
d

A1þB1X1, X1 and (A1, B1) are independent, has a solution unique in distribution given by

X1 ¼
d P1

j ¼ 1 Aj

Qj�1
i ¼ 1 Bi.

2. If in (9) we take X0 ¼
d

X1, then the process Xt is stationary.
3. No matter how the process Xt is initialized Xt-

d
X1.

4. The limits limx-1xkPrðX14xÞ and limx-1xkPrðX1o�xÞ exist and are finite; at least one of these limits is strictly positive.

The basic intuition for the Kesten theorem to hold is as follows.3 Kesten’s theorem basically applies if there exists a k
such that E½jB1j

k� ¼ 1. The essential idea behind this requirement is that the multiplicative innovations should be
sufficiently spread out to allow realizations larger than one, such that past realization have a more than proportionate
impact on the current realization. But this should not occur too frequently, otherwise the process becomes non-stationary.
This implies that at least one of the tails of the stationary distribution will decline according to a power-law.

Hence, when the stochastic coefficients of the dynamic RBC equation given by (8) meet the conditions above, Kesten’s
theorem predicts that log income over time becomes spread out over the positive half axis and has a distribution with a
power like upper tail. Standard macro has it that the log of national income is normally distributed. Recent evidence,
however, shows that the growth rates have a heavy upper tail. See for instance, Cumperayot and de Vries (2006) who
calculate the tail index k for several macroeconomic variables, including log income, using time series data for various
countries.4

In the remainder of this section we focus on calculating the approximate solution of the RBC equation (8) and study how
it compares with the original process. When the system of Eqs. (1)–(4) does not have a closed form solution, the standard
approach is to consider a linearization of the Euler equations around the steady state of the model. For instance, when the
capital does not depreciate fully, Campbell (1994) takes the log-approximation of the capital accumulation equation (2).
We depart from this practice, since in our model the nonlinearity stems from the learning by doing specification for
technological progress. In particular, the nonlinearity is generated by two random variables that enter multiplicatively in
(7). The standard log-linearization would linearize equations that need not be linearized, without solving the stochastic
nonlinearity. Since the nonlinearity from the stochastic learning by doing is transferred directly in the relation for log-
income (8), we take the approximation at this point.

To this end, rewrite (9) as follows:

ytþ1 ¼ aþmtþ1þðbþntþ1Þyt ð10Þ

where a¼ ð1�aÞlogbð1�aÞþalogf and mt ¼ alogft�alogf, while b¼ aeþ1�a, nt ¼ aet�ae, such that mt and nt are mean
zero random variables (assuming the mean exists).

To eliminate the nonlinearity from Eq. (10) due to the multiplicative random shock (b+nt+ 1), we apply a first order
Taylor expansion around the stochastic steady state:

ytþ1 ¼ aþmtþ1þbytþ
a

1�b
ntþ1 ð11Þ

ARTICLE IN PRESS

2 The following notation logþ jB1j ¼maxðlogjB1j;0Þ is used.
3 For the interested reader, Embrechts et al. (1997, Chapter 8.4) contains an accessible summary treatment.
4 Recall that Pareto’s power law is derived from the observed distribution of individual income levels in a given period, while the RBC model studied

here derives the distribution of the log of national income over time. Within the current model Pareto’s law can be captured by assuming that the random

variable f is individualized and is Pareto distributed. Note that this in no way drives the result for the distribution of log of national income over time, as

the (individualized) logf would be exponentially distributed.
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If the deterministic part b of the multiplicative shock is less than one, the linearized equation for log income (11) is a
stationary AR(1) process. However, bo1 is not a necessary requirement for the Kesten result to hold. As b41 the AR(1)
approximation becomes non-stationary; but (10) may still have a stationary limit distribution.

The starkest contrast between the linearized solution and the solution to the original model is obtained if we assume
that the innovations et and ft have a distribution with bounded support. For example, consider mt and nt uniformly
distributed on the intervals [�m,m] and [�b,b], respectively, where it is assumed that 0omoa and 0obo1. We show
that yt generated by (11) has a bounded support, while (10) implies an equilibrium distribution of yt with unbounded
support. Taking y0=0 and iterating (11) we obtain

yt ¼ a
Xt

i ¼ 1

bt�i

 !
þ

Xt

i ¼ 1

mib
t�i

 !
þ

a

1�b

Xt

i ¼ 1

nib
t�i

 !
ð12Þ

Setting mt=m and nt=b we get

yt rmax yt r
a

1�b
þ

m

1�b
þ

ab

ð1�bÞ2
ð13Þ

Thus yt is bounded from above.
Turning to (10), if we can show that the Kesten Theorem 1 applies, it would immediately follow that the support of the

equilibrium distribution is unbounded due to the Pareto type tail. From the assumptions it follows that B1 is uniformly
distributed on the interval [0, 2b]. In other words we need to show that the equation in k

E½Bk1 � ¼

Z 2b

0
tk

1

2b
dt¼

ð2bÞk

ðkþ1Þ
¼ 1 ð14Þ

has a strictly positive solution. This holds for any b 2 ð1=2; e=2Þ.5 For example, it can be easily checked that the pair
ðk; bÞ ¼ ð2;

ffiffiffi
3
p

=2Þ satisfies the equation.
The second case we consider gives less stark of a contrast if we assume that (a+mt) and (b+nt) are exponentially

distributed random variables with respective means a and b. The backward iteration of the process in Eq. (11) implies that
yt depends on two weighted sums of exponentially distributed random variables. Proposition 1 below describes the
behavior at the limit of a weighted sum of random variables that follow a Gamma distribution. Since the exponential
distribution is a special case of the Gamma distribution, we appeal to this proposition to infer that the approximate
solution yt follows a distribution with exponential declining tail. The original model, however, has a solution for which the
stationary distribution exhibits power decline.

We use the remainder of the section to show that the Kesten theorem applies when At=a+mt and Bt=b+nt are
exponentially distributed. It is sufficient to show that the three conditions of the Kesten theorem hold. First we argue that
E½logB1�o0. Given that E½logB1� ¼

R1
0 lnðxÞð1=bÞe�x=b dx, by a transformation of variable

E½logB1� ¼

Z 1
0
ðlnyÞe�y dyþ lnb

Z 1
0

1

b
e�x=b dx¼�Cþblnb

if b 2 ð0;1Þ, and where C denotes Euler’s constant. Clearly �Cþblnbo0, for bo1. Second, we show that the main
condition is fulfilled. Note that

E½Bk1 � ¼

Z 1
0

xk
1

b
e�x=b dx¼ bk

Z 1
0

yke�y dy¼ bkGðkþ1Þ

Since Gð2Þ ¼ 1 and Gðkþ1Þ ¼ k! eventually overtakes ð1=bÞk as k increases, the equation E½Bk1 � ¼ 1 has a solution.
Furthermore, since

E½BklogþB�oE½Bkþ1� ¼ bkþ1Gðkþ2Þo1

E½jBjklogþ jBj�o1 is satisfied for b 2 ð0;1Þ. Lastly, the condition 0oE½Ak�o1 follows from a similar argument.
Thus if one analyzes the original dynamic RBC equation (8), one finds that log income becomes spread out over the

positive half axis and, moreover, has a distribution with a heavy Pareto upper tail. Under the same conditions, however,
when one starts from the approximation (11), income either remains bounded or exhibits exponentially thin tails.

3. Conditional volatility in the CAPM model

In this section we illustrate with another example how the linearization affects the stochastic properties of the original
model. We consider an intertemporal version of the Capital Asset Pricing Model (CAPM) as presented in Campbell et al.
(1997, pp. 323, 494). The CAPM relates the expected return of an asset to the covariance of its return with the market

ARTICLE IN PRESS

5 One needs boe=2 for E½logjBj� ¼ ln2b�1 to be negative. We are grateful to a referee to point out that the upper bound can be as high as e/2. Note

furthermore that E½jBjklogþ jBj� equals bln2b�b=2 and hence is finite for b 2 ð1=2; e=2Þ; moreover, since 0r jaþmtþ1jraþm and given the uniform

distribution of mt + 1, it follows that 0o ða�mÞkoE½jAjk�oðaþmÞko1.
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portfolio return. In a dynamic setting, when applied to the market portfolio itself, the intertemporal CAPM model predicts
that the expected market portfolio excess returns depend linearly on the variance of market portfolio.

It has been widely observed that periods of turbulence in the stock market are generally followed by further periods of
turbulence, while periods of tranquility are followed by periods of tranquility. The intertemporal CAPM model can account
for this empirical observation by allowing the variance of the market portfolio to be time varying. In fact, there is ample
evidence that the volatility is an autoregressive process for which the ARCH process specification is a natural choice.
Moreover, the ARCH process also captures the martingale property of the returns. The properties of the stationary solution
of the ARCH process have direct implications for the equilibrium distribution of the returns of the market portfolio. We
investigate how this equilibrium distribution is affected when both the ARCH specification and its linear approximation are
considered.

Consider again the first order stochastic difference equation (9)

Xt ¼ AtþBtXt�1

The ARCH process is related to (9) in the following way. Consider qt ¼ stst , where st � IID N(0, 1) and where the variance s2
t

of qt is driven by its own past squared s2
t ¼ vþwq2

t�1; see Engle (1982). Squaring the mean equation q2
t ¼ s2

t s2
t and

substituting the variance equation in this expression, gives

q2
t ¼ vs2

t þws2
t q2

t�1 ð15Þ

Equating qt
2 with Xt, vst

2 with At and wst
2 with Bt, yields the difference equation (9). The parameters of this difference

equation are random variables that follow chi square distributions. The ARCH process is the most popular specification for
volatility clusters in finance.

We first investigate the properties of the linearized version of (9). Let At and Bt in (9) have mean a and b, respectively
(where 0obo1, by assumption), so that we may write At=a+mt and Bt=b+nt. Eq. (9) only contains a single nonlinear term.
To approximate the nonlinear term BtXt�1, we take again a first order Taylor expansion around the stochastic steady state
with respect to Xt�1 and nt. This transforms (9) into

Xt ¼ aþmtþbXt�1þ
a

1�b
nt ð16Þ

In the case of ARCH the analogous first order Taylor approximation will give the following AR(1) process for qt
2:

q2
t ¼ vþwq2

t�1þ
v

1�w
ðs2

t�1Þ ð17Þ

and where a=v, mt = v(st
2
�1), b=w and nt=w(st

2
�1).

We show that the conditions of Theorem 1 apply to the ARCH process (15). In the case of ARCH, B1=ws1
2, and we need to

ascertain that there exists a k such that E½ðws2
1Þ
k
� ¼ 1. Given the normality assumption regarding s1, we can rewrite this

condition as follows:

Gðkþ1
2Þ ¼ p

1=2ð2wÞ�k:

Note that for w=1 the equation has the solution k¼ 1. Since for given ð2wÞ�k is increasing as w decreases from 1 and the
gamma function is increasing in k, there exists a solution for any 0owo1 such that k41. For example ðw;kÞ ¼ ð1=

ffiffiffi
3
p

;2Þ
is a solution. This solution implies that for w41=

ffiffiffi
3
p

the stationary solution of (15) has a finite variance (as k42). By the
fact that PrðX14xÞ � cx�k, the r-th moment exists as long as

R1
1 xrx�k�1 dx is bounded, which requires rok. The other

conditions can be verified to hold as well.6

Thus the remarkable feature of the ARCH process is that while the driving random variables have distributions with
exponential type upper tails (chi-square distribution), the linear process has a solution which is distributed with a
hyperbolic type upper tail implying moment failure. Per contrast, the approximation (17) has a distribution with all the
moments finite. To show this, we first obtain a more convenient expression for qt

2 by iterating (17) backwards

q2
t ¼ v

1�wt

1�w
þ

v

1�w

Xt

i ¼ 1

wt�iðs2
i �1Þþwtq2

0 ð18Þ

This expression indicates that the asymptotic behavior of qt
2 is driven by the properties of the limit distribution ofPt

i ¼ 1 wt�is2
i . The next proposition summarizes a result that enables us to prove how the first-order approximation to the

ARCH process changes the stochastic properties of the solution.

Proposition 1. Let St ¼
Pt

i ¼ 1 li�1Qi, where Qi is a random variable with a Gamma distribution with parameters A and B

strictly positive and l is a constant in the interval (0, 1). Then the limit distribution of St as t-1 exhibits thin tails.

Proof. A proof is available in the Appendix of the working paper version. &

ARTICLE IN PRESS

6 de Haan et al. (1989) first linked the ARCH process to the Kesten equation and discussed the extremal behavior of the process. Engle (1982) already

described the finite number of bounded moments.
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The chi-square distributed random variables are a particular case of gamma distributed random variables, so that the qt
2

from the approximation (17) has all its moments finite. Theorem 1, however, implies that the original qt
2 from (15) has

heavy tails, so that the higher moments are unbounded. Thus while the first order approximation has in expectation a
solution which is identical to the solution (in expectation) of the original ARCH process, the stochastic properties differ
regarding the tail area of the distributions. Nevertheless, both the approximation and the ARCH process pick up the
volatility clustering.

It follows that the equilibrium solution for the return of the market portfolio is affected by the linear approximation of
the ARCH specification for the volatility. The original ARCH specification predicts fat-tailed returns, an empirical finding
now widely accepted in the field. However, the linearization implies that the market returns would exhibit thin-tails as in
the original CAPM with constant volatility and normally distributed returns. Even though (17) does pick up the clustering
of volatilities, it fails to induce heavy tails.

3.1. Connecting the ARCH and SV model

We discuss the properties of the stochastic steady state of the ARCH model in relation with a stochastic volatility (SV)
model, as introduced by Harvey et al. (1994). A comparison of the two models builds on the approximation discussed
above. In essence, we show that the limiting behavior of the SV model and the log-linearized version of the ARCH model
can be identical.

Stochastic volatility models are a popular alternative for the ARCH models. The SV model has the advantage that it can
allow for asymmetric leverage effects. In the SV model, the volatility process is rewritten as

q2
t ¼ s2

t eht ð19Þ

where, using the previous notation, ht ¼ logs2
t . The difference with the standard ARCH model is the way in which the

variance s2
t of qt is driven by its own past and an exogenous innovation zt:

ht ¼ aþbht�1þzt ð20Þ

Here zt is assumed to be IID Nðu;fÞ. To this point we do not make any assumption on the distribution of st.
By taking logarithms in (19) we can rewrite the process for the variance (20) as

logq2
t�logs2

t ¼ aþblogq2
t�1�blogs2

t�1þzt

It is then straightforward to show through backward iteration that

logq2
t -logs2

t þ
a

1�b
þ
X1
i ¼ 0

bizt�i ð21Þ

where the convergence is in probability.
The standard ARCH process qt ¼ stst , with variance s2

t ¼ vþwq2
t�1, was given in (15). While sofar we have concentrated

on the effects of straightforward linearization of the process given in (15), for a sharper comparison with the stochastic
volatility model we analyze the solution of the log-linearized ARCH model. As before, the non-stochastic steady state is
q2=v/(1�w) and it is assumed that E[st

2]=1. Log-linearization around the steady state gives

q2log
q2

t

q2
¼ ½vþwq2�s2log

s2
t

s2
þws2q2log

q2
t�1

q2

Iterating backwards gives

log
q2

t

q2
¼
X1
i ¼ 0

wilogs2
t�i ð22Þ

We show that for certain choices of parameters and innovations the stationary solution (22) can be made identical to
the limit distribution of (21). To this end, suppose that st ¼ Q

ffiffiffiffi
xt
p

, where the xt are lognormally distributed with mean 1 and
variance e�1; and Q is a Bernoulli random variable that equals 1 with probability 1

2 and �1 with probability 1
2. This implies

that logs2
t �Nð�1=2;1Þ. Under this assumption we show that the standard ARCH process implies a limit distribution for qt

2

that is heavy tailed, while both the log-linearization of the ARCH process and the SV process yield solutions that are
distributed with an exponential type tail.

The standard ARCH model yields a martingale for the log stock prices that can be positive and negative. Moreover one
shows that Kesten’s theorem applies as E½ðws2Þ

k
� ¼ 1 requires that

wke�kþk
2=2 ¼ 1

has a solution. By taking logs, one sees that this equation has a non-trivial root k¼ 2ð1�logwÞ40 (recall that w 2 ð0;1Þ).
The other conditions are easily verified: E½logðws2Þ� ¼ logw�1=2o0; furthermore, E½ðws2Þ

klogðws2Þ�oE½ðws2Þ
kþ1
�o1 and

E½ðvs2Þ
k
�o1. Thus by Kesten’s theorem it follows that the stationary solution of this specific ARCH model is heavy tailed.

ARTICLE IN PRESS
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The log-linearized version of the ARCH model, however, has a stationary solution that follows a normal distribution

log
q2

t

q2
�N �

1=2

1�w
;

1

1�w2

� �
ð23Þ

The stochastic volatility model also has a normal distribution as its stationary solution

logq2
t �N

uþa

1�b
�

1

2
;1þ

f
1�b2

� �

This implies that7

log
q2

t

q2
�N

uþa

1�b
�

1

2
�eðuþaÞ=ð1�bÞþf=2

ð1�b2Þ;1þ
f

1�b2

� �
ð24Þ

Compare the expressions for the stationary solution to the SV model in (24) to the stationary solution of the log-linearized
ARCH model (23). There are a sufficient degrees of freedom in the choices of parameters such that the two limit
distributions can be made identical. To conclude, the SV model can be seen as a linearized version of the ARCH model.

As we argued in the beginning, both the ARCH and SV models capture the time varying nature of the volatility. Since the
intertemporal CAPM predicts that the expected excess return is linear in the variance of the market portfolio, it then
follows that the unconditional distribution of the returns is thin or heavy tailed depending on whether the SV (the
approximate ARCH), or the original ARCH process is used to model the volatility process.

4. Discussion

In this paper we have considered two cases to analyze the failures of the first order stochastic approximation. Our focus
has been to contrast the stochastic properties of the approximate solution with the stochastic properties of the original
model. We study two simple frameworks that allow us to compare the approximation and the original model without
taking recourse to simulations.

The first application considers a basic RBC model with full depreciation of capital and log utility function. Admittedly,
these assumptions are stylized. For instance, it is more common in applied analysis to assume that the capital depreciates
at a rate lower than unity. However, imposing simple conditions is necessary to derive a closed form solution for the RBC
model (cf. Campbell, 1994). The transfer of capital between periods introduces nonlinearity in the system (1)–(4), which, in
this case, needs to be solved by taking a log-linearization. The closed form solution gives us a useful benchmark to study
the properties of the approximate solution in a meaningful way.

In our basic RBC model, the nonlinearity has a stochastic dimension. This becomes clear when looking at the difference
equation that characterizes the process for log-income (8), where both coefficients are stochastic. In essence, the
nonlinearity is generated by two random variables that enter multiplicatively in (8). The first order approximation will
transform the equation such that all random variables enter additively. In our example, the source of nonlinearity stems
from the learning by doing specification for technological progress. More generally, any RBC model that can be
characterized through linear stochastic difference equations adhere to Kesten’s result.

The second application shares similar features with the RBC model. Namely, the nonlinearity in the ARCH model has the
same multiplicative-stochastic nature. The approximation works again to separate the two random variables qt�1

2 and st in
(15). This explains why the solution obtained from log-linearization of ARCH has similar stochastic properties as the
solution for the stochastic volatility model. Both the approximated model and the stochastic volatility model are based on a
linear first order difference equation with deterministic coefficients.

5. Conclusions

The solution of a stochastic macro model is usually determined through a linearization around the associated
deterministic steady state. Recently, a significant number of papers has thoroughly examined the errors that could
potentially be made by such an approximation. This literature, however, is mainly preoccupied with the analysis of the
deterministic part of the approximate solution.

Parallel to this literature, we have studied what are the effects of the linearization on the stochastic properties of the
original model. To this end we have solved the simplest model in the business cycle literature with fixed labor supply, total
depreciation of capital, a log-utility function and noisy learning by doing. We showed that the solution of the resulting
stochastic difference equation yields a distribution for the log of income over time which is stationary, exhibits moment
failure and has an unbounded upper support. The approximation, however, has a stationary distribution with bounded
support and all moments finite. As a second example we considered the intertemporal CAPM asset pricing equilibrium
model from finance with stochastic volatility.
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7 Since qt
2 is lognormally distributed we have E½q2

t � ¼ expððuþaÞ=ð1�bÞþ 1
2f=ð1�b2ÞÞ.
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To conclude, an approximation of the stochastic part of an equilibrium model needs to be considered with the same care
as an approximation of the deterministic part. Although often disregarded, the approximation can alter the global data
features in equilibrium dramatically.
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