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This paper presents a context-dependent theory of decision under risk. The relevant con-

textual factor is the presence of a riskless lottery in a preference comparison. The theory

only deviates from expected utility if the set of options contains both riskless and risky

lotteries. The main motivation for the theory is to explain the gambling effect. Contrary

to previous theories of the gambling effect, the present theory is consistent with stochastic

dominance. It can, however, violate transitivity. The theory allows for a decomposition of the

interaction between risk aversion and gambling aversion and thereby extends the classical

Arrow-Pratt measure of risk aversion.

(Nonexpected Utility; Gambling Effect; Risk Aversion; Intransitivity)

1. Introduction
It is by now widely recognized that expected util-

ity (EU) is not a good descriptive theory of decision

under risk. Violations of EU are especially likely when

a preference comparison is made between a risky and

a riskless lottery (Kahneman and Tversky 1979, Cohen

and Jaffray 1988). The common consequence effect

and the common ratio effect (Allais 1953) are well-

known examples of such EU violations. Violations

are much less pronounced when both lotteries are

risky (Camerer 1992). This preference pattern can be

explained by the existence of a “gambling effect,” i.e.,

the effect that people’s processing of lotteries changes

if one of the lotteries is riskless.

The possibility of a gambling effect was already

mentioned by von Neumann and Morgenstern (1944,

p. 28). They felt, however, that an axiomatization

of the gambling effect was impossible (see also

Tversky 1967). Fishburn (1980), Schmidt (1998), and

Diecidue et al. (2001) proposed axiomatic models of

the gambling effect in decision under risk. Luce and

Marley (2000) developed a model of the gambling

effect in decision under uncertainty. Diecidue et al.

(2001) showed that any model of the gambling effect

has to violate an elementary rationality condition. In

their model, as in the models of Fishburn (1980),

Schmidt (1998), and Luce and Marley (2000), this con-

dition is stochastic dominance. Diecidue et al. men-

tion the possibility that transitivity can be abandoned

instead of stochastic dominance, but only propose an

ad hoc manner of doing so, namely through an edit-

ing operation.

Stochastic dominance is generally considered nor-

mative, and therefore the main application of the

above models is descriptive. It is legitimate, however,

to ask to what extent the violations of stochastic dom-

inance predicted by these models are really descrip-

tive. Empirical evidence has shown that people vio-

late stochastic dominance in decision situations where

stochastic dominance is not transparent, but behave

according to stochastic dominance when stochastic

dominance is clear. Based on a review of the literature,

Starmer (2000) notes as a stylized fact that “very few

people will choose a stochastically dominated option

from a choice set when it is transparently obvious that

the option is dominated” (p. 360). The aforementioned
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models of the gambling effect imply violations of

stochastic dominance only when a riskless lottery is

compared with a risky lottery which has no outcomes

worse than the outcome of the riskless lottery. That is,

they imply violations of stochastic dominance only

when stochastic dominance is transparent. Therefore,

the descriptive applicability of these models seems

limited.

The present paper proposes an alternative theory

of the gambling effect that is consistent with stochas-

tic dominance. The theory assumes that preferences

are context dependent, i.e., preferences depend on

the other alternatives in the choice set. We distin-

guish two different contexts, one in which at least

one lottery in a preference comparison is riskless and

one in which both lotteries in a preference compar-

ison are risky. We assume that people use different

evaluation processes when they compare a riskless

lottery with a risky lottery than when they com-

pare two risky lotteries. In both cases the evalua-

tion is performed by expected utility, but the util-

ity function may differ between the two cases. The

presence of a riskless lottery makes people more

aware of the risk in the other lottery and changes

their attitude towards risk. This prediction is in line

with the empirical finding that measurements com-

paring risky with riskless lotteries yield systematically

different (more concave) utility functions than mea-

surements that invoke only risky lotteries (McCord

and de Neufville 1986, Wakker and Deneffe 1996).

Context dependence of preferences distinguishes our

model of the gambling effect from the models of

Fishburn (1980), Schmidt (1998), Luce and Marley

(2000), and Diecidue et al. (2001), in which preferences

are independent of the context. Several studies show

empirical support for context-dependent preferences

(Huber et al. 1982, Huber and Puto 1983, Wedell 1991,

Simonson and Tversky 1992, Tversky and Simon-

son 1993). Marley (1991), Lakshmi-Ratan et al. (1991),

and Tversky and Simonson (1993) proposed models

of context-dependent preferences in different settings

than considered in this paper.

As noted, our model does not violate stochas-

tic dominance (see Corollary 4.2). A consequence

of ruling out these violations of stochastic dom-

inance, however, is that the model allows viola-

tions of transitivity (see Theorem 4.3). The possibility

of intransitivities limits the prescriptive applicability

of our model. Even though some authors have

argued that intransitive preferences can be normative

(Loomes and Sugden 1982, Fishburn 1982, Sugden

1985, Anand 1987, Fishburn 1991), intransitivities are

commonly regarded as irrational (Luce 2000). The lat-

ter view is confirmed by experimental evidence that

people want to correct intransitivities when these are

pointed out to them (MacCrimmon 1968). The main

application of our model is therefore descriptive. Our

model allows violations of transitivity in comparisons

involving both riskless and risky lotteries. Loomes

et al. (1991) find that such violations of transitivity

frequently occur. The most common violation of tran-

sitivity in their study is a violation allowed by our

model. This evidence supports the descriptive appli-

cability of our model.

Several models of intransitive preferences exist.

Luce (1956) attributes failures of transitivity to

limited discriminatory ability. Regret theory (Bell

1982, Loomes and Sugden 1982, Sugden 1993) and

Fishburn’s (1982) skew-symmetric bilinear (SSB) the-

ory retain precise discriminability but allow pref-

erences over lotteries to be cyclic �P1 � P2 � · · · �
Pn � P1�. Like regret theory and SSB theory, our model

is a precise discriminability theory. An advantage of

our model over regret theory and SSB theory is that

it is entirely consistent with Allais’ common conse-

quence effect. Regret theory and SSB theory cannot

explain the common consequence effect when alter-

natives are statistically correlated. Empirical studies

show evidence of the common consequence effect

both when alternatives are independent and when

they are correlated (Starmer 1992, Groes et al. 1999).

In what follows, §2 introduces notation and

describes the model of this paper, referred to as the

gambling effect model. Section 3 gives a preference

characterization of the gambling effect model. In §4

we show that the gambling effect model is consis-

tent with stochastic dominance, but violates transitiv-

ity. An important advantage of the gambling effect

model for practical decision analysis is that its elici-

tation is straightforward. Section 5 describes the elic-

itation procedures. Section 6 characterizes the empir-

ically observed case that the utility function that is
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applied in preference comparisons where at least one

lottery is riskless is more concave than the utility

function that is applied in comparisons where all lot-

teries are risky. In EU, risk attitude properties are

useful in characterizing the class of applicable utility

functions, in reducing the assessment effort, and in

analyzing behavior under risk. The Arrow-Pratt mea-

sure of risk aversion in particular has proved to be

an important tool for characterizing and comparing

individual behavior. Section 7 shows how the Arrow-

Pratt measure of risk aversion and other important

concepts such as aversion to mean-preserving spreads

and the risk premium can be extended to the gam-

bling effect model. The gambling effect model allows

for a separation between “pure” risk attitudes that are

observed in comparisons between risky lotteries and

gambling attitudes that are observed in comparisons

between riskless and risky lotteries. This separation

makes it possible to identify in theoretical applica-

tions which results are due to pure risk attitude and

which are due to gambling attitude. Properties of pure

risk attitude and gambling attitude can be exploited

to further specialize the gambling effect model and to

analyze individual behavior much in the same way as

they are used in expected utility. Section 8 concludes.

Proofs are relegated to the appendix.

2. Notation and Outline
of the Model

Let � be a set of outcomes. � can denote any

type of outcomes. We restrict attention to decision

under risk, hence probabilities are given. A lottery
�p1�x1� � � � � pn� xn� yields outcome xi ∈ � with prob-

ability pi� i = 1� � � � �n. Binary lotteries are denoted

�x� p�y�. By � we denote the set of all simple lotteries
over � , i.e., lotteries that assign positive probabilities

to a finite number of outcomes. A consequence x ∈ �
is identified with the riskless lottery �1�x�. Therefore,

� is identified with the subset of � containing all

riskless lotteries. The remaining set of risky lotteries
�=�−� contains those lotteries that assign positive

probabilities to at least two different outcomes.

A preference relation � is defined over �. As usual,
� denotes the asymmetric part of � (strict preference)

and ∼ the symmetric part (indifference). Throughout,

we assume that � contains at least three mutually

nonindifferent outcomes. We further assume that each

lottery P ∈� has a certainty equivalent, i.e., for all P ∈�
there exists an outcome xp ∈� such that xp ∼P. A real-

valued function V on � represents � if for all P�Q ∈�,
V�P� ≥ V�Q� if and only if P�Q. The gambling effect
model holds if there exist real-valued utility functions

v�·� and u�·� defined on � , such that for all P�Q ∈ �
with �x1� � � � � xn� the joint support of P and Q,

(i) if P and Q ∈ �, then P �Q iff
∑n

i=1 pi · u�xi� ≥∑n
i=1 qi ·u�xi�;

(ii) if P or Q ∈ � , then P �Q iff
∑n

i=1 pi · v�xi� ≥∑n
i=1 qi ·v�xi�.

Thus, the individual’s preferences depend on the

decision context. If both lotteries are risky, then

the decision maker behaves as an expected util-

ity maximizer with von Neumann-Morgenstern util-

ity function u�·�. If one of the lotteries is riskless,

then the decision maker perceives the risk differently

and behaves as an expected utility maximizer with

von Neumann–Morgenstern utility function v�·�. The
utility function in EU theory is unique up to positive

linear transformations, i.e., for all x ∈ � , two utility

functions u�·� and u∗�·� represent the same preference

ordering if and only if u�x� = a ·u∗�x�+ b with a > 0

and b real. Consequently, violations of expected util-

ity can occur in the gambling effect model in case u�·�
and v�·� are not related by a positive linear transfor-

mation. Because the gambling effect model satisfies

EU when the set of options contains only risky lotter-

ies, violations of EU can only occur at the corners of

the probability triangle.

The gambling effect model can explain two well-

known violations of EU, both due to Allais (1953). The

common consequence effect refers to the empirical obser-

vation that there exist outcomes a � b � c such that

S = �1� b� is preferred to R= �p1� a�p2� b�1−p1−p2� c�,

and R′ = �a� p1� c� is preferred to S ′ = �c� p2� b�. The

common ratio effect refers to the observation that there

exist outcomes a � b � c such that for � ∈ �0�1� S =
�1� b� is preferred to R= �a� p1� c�, and R′ = �a�� ·p1� c�

is preferred to S ′ = �b��� c�. The common consequence

effect and the common ratio effect can be explained

by the gambling effect model if v�·� is a concave trans-
formation of u. Empirical evidence suggests that the

elicited utility function is more concave when one of
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the lotteries is riskless than when both lotteries are

risky (McCord and de Neufville 1986, Wakker and

Deneffe 1996). In §6, we characterize the case in which

v�·� is more concave than u�·�.
The models by Fishburn (1980), Schmidt (1998), and

Diecidue et al. (2001) also contain two separate utility

functions, u�·� and v�·�. Similar models were consid-

ered in Tversky (1967) and Conlisk (1993). In these

models, v�·� is used to evaluate riskless lotteries and

u�·� is used to evaluate all risky lotteries. Dyer and

Sarin (1982) also suggested different evaluations for

riskless and risky lotteries. In Dyer and Sarin’s model,

u�·� is used in evaluations where at least one lot-

tery is risky. The utility function v�·� is only used in

evaluations in which all lotteries are riskless. Dyer

and Sarin’s model is consistent with expected utility

and therefore cannot explain the gambling effect. The

function v�·� in Dyer and Sarin’s model is different

from our function v�·�. In our model, v�·� is related

to risky choice and is solely derived from revealed

choice. Dyer and Sarin’s function v�·� does not cap-

ture risk attitude and takes strength of preference as

its primitive. Both Dyer and Sarin’s function v�·� and
our function v�·� represent preferences over outcomes.

Hence, it appears plausible that our function v�·� is a
strictly increasing transformation of Dyer and Sarin’s

function v�·�. Our function u�·� and Dyer and Sarin’s

function u�·� both represent preferences over risky lot-

teries. Therefore, it is arguable that these two func-

tions are also related by a strictly increasing transfor-

mation. Dyer and Sarin’s functions u�·� and v�·� are

related by a strictly increasing transformation because

they both represent preferences over outcomes. The

above argument, therefore, might suggest that our

Table 1 Overview of Models Using Different Utility Functions

Two Riskless One Riskless and Two Risky
Lotteries One Risky Lottery Lotteries

Model x�y x�P Q�P

Dyer and Sarin (1982) v�x�≥ v�y � u�x�≥∑n
i=1 pi ·u�xi �

∑n
i=1 qi ·u�xi �≥

∑n
i=1 pi ·u�xi �

Fishburn (1980)
Schmidt (1998) v�x�≥ v�y � v�x�≥∑n

i=1 pi ·u�xi �
∑n

i=1 qi ·u�xi �≥
∑n

i=1 pi ·u�xi �

Diecidue et al. (2001)

Present model v�x�≥ v�y � v�x�≥∑n
i=1 pi · v�xi �

∑n
i=1 qi ·u�xi �≥

∑n
i=1 pi ·u�xi �

functions u�·� and v�·� are also related by a strictly

increasing transformation. This is not necessarily true,

however, which shows that our model is really differ-

ent from Dyer and Sarin’s model and that there is no

clear relationship between our functions u�·� and v�·�
and Dyer and Sarin’s functions u�·� and v�·�.
Table 1 summarizes the different models that

employ separate utility functions u�·� and v�·�.
Neilson (1992) and Humphrey (1998) proposed

models of decision under risk where for each natural

number n a utility function un is given. Lotteries with

exactly n positive-probability outcomes are evaluated

by expected utility with respect to un. The models of

Fishburn (1980), Schmidt (1998), and Diecidue et al.

(2001) are special cases of the Neilson-Humphrey

model where only u1 deviates from the other utilities

and all ujs for j ≥ 2 are equal. Schmidt (2001) showed

that the basic idea of the Neilson-Humphrey model

can also be integrated in the lottery-dependent utility

model (Becker and Sarin 1987). In lottery-dependent

utility the utility function depends on the lottery

being evaluated, and lotteries with the same number

of positive probability outcomes are generally evalu-

ated by different utility functions.

In the health literature, Gafni et al. (1993) have sug-

gested different utility functions u�·� and v�·�. Their
model is similar to Dyer and Sarin’s (1982) model in

that v�·� is only used if all lotteries are riskless. The

function u�·� is used if at least one lottery is risky.

Gafni et al.’s model differs from Dyer and Sarin’s

model in that u�·� and v�·� can order outcomes dif-

ferently. Consequently, their model allows intransi-

tivities (Loomes 1995, Wakker 1996). Gafni et al.’s

model can neither explain the common consequence
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effect, nor the common ratio effect, nor the gam-

bling effect. Gafni et al. proposed their model to

defend the healthy-years-equivalents (HYE) measure

(Mehrez and Gafni 1989) for the measurement of

health. Because of the empirical implausibility of

Gafni et al.’s utility model, the HYE has been largely

discarded in the medical literature. This is unfortu-

nate, because the HYE measure has valuable prop-

erties, in particular its focus on complete episodes

of treatment. The gambling effect model can give a

sound theoretical foundation to the HYE idea.

3. Characterization
Define two preference relations �r and �s from � as

follows,

(1) for P�Q ∈�, P �r Q if P � Q;

(2) for P or Q ∈ � , P �s Q if P � Q.

We derive expected utility representations for �r and

for �s . To do so, we reformulate Jensen’s (1967)

axioms in terms of �r and �s . We impose the follow-

ing assumptions on �r :

(i) Weak order: �r is a weak order, i.e., it is transitive

and complete.

(ii) R-Independence: For all P�Q ∈ �, R ∈ �, 	 ∈
�0�1
, if P �r Q then 	P + �1−	�R �r 	Q+ �1−	�R.

(iii) R-Continuity: For all P�Q�R∈�, if P �r Q�r R,

then there exist 	�� ∈ �0�1� such that 	P+ �1−	�R�r

Q and Q �r �P + �1−��R.

R-independence is a weakening of von Neumann-

Morgenstern independence to preference compar-

isons between risky lotteries.

We impose three axioms on �s .

(iv) Weak order: (i) For all P�Q ∈� with P or Q ∈� ,

P �s Q or Q �s P, and (ii) for all P�Q�R ∈ � with P

or R ∈ � , if P �s Q and Q �s R, then P �s R.

Formulating independence is somewhat difficult. The

common definition of independence involves prefer-

ence comparison between probabilistic mixtures, i.e.,

between two elements of � and, hence, provides no

information on �s . To compare probability mixtures

we must use certainty equivalents as intermediaries.

We now define independence for �s .

(v) S-Independence: For all P�Q�R ∈ �, x�y�x′�y′ ∈
� , 	∈ �0�1
, if P ∼s x, Q∼s y, 	P+�1−	�R∼s x′, 	Q+
�1−	�R ∼s y′, and x �s y, then x′ �s y′.

S-Independence says that if a certainty equivalent of

P is weakly preferred to a certainty equivalent of Q,

then a certainty equivalent of any probabilistic mix-

ture of P with R should be weakly preferred to a cer-

tainty equivalent of the same probabilistic mixture of

Q with R.

Our final condition is a continuity condition which

requires that for every outcome that is not weakly

preferred or dispreferred to all lotteries there exists a

risky lottery that is equivalent to it.

(vi) S-continuity: For all x ∈ � , P�Q ∈ �, if P �s

x �s Q, then there exists a 	 ∈ �0�1� such that 	P +
�1−	�Q ∼s x.

Theorem 3.1. The following two statements are equiv-
alent:
(i) � can be represented by the gambling effect model.
(ii) � satisfies axioms (i)–(vi).

4. Stochastic Dominance
and Transitivity

Stochastic Dominance
The analysis of the preceding section did not impose

any restrictions on the relation between u�·� and v�·�.
We now impose a condition that ensures that u�·� and
v�·� are ordinally equivalent, i.e., for all x�y ∈� , u�x� ≥
u�y� iff v�x� ≥ v�y�. It is well known that ordinal

equivalence of u�·� and v�·� implies that there exists a

strictly increasing function f such that for all x ∈ � ,

v�x� = f �u�x��.

The preference relation � satisfies gamble monotonic-
ity if for all R ∈ �, for all x�y ∈ � , and for all 	 ∈
�0�1
� x � y iff 	x + �1− 	�R � 	y + �1− 	�R. Gam-

ble monotonicity was introduced by Diecidue et al.

(2001) and says that the replacement of an outcome

by a preferred outcome leads to a preferred lottery.

R is a risky lottery in the definition of gamble mono-

tonicity to ensure that the gambles 	x+ �1−	�R and

	y+ �1−	�R are both risky and are evaluated by u.

Theorem 4.1. Suppose that � can be represented by the
gambling effect model. The following two statements are
equivalent:
(i) u�·� and v�·� are ordinally equivalent.
(ii) � satisfies gamble monotonicity.
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The preference relation � satisfies stochastic dominance
if for all R ∈ �, for all x�y ∈ � , and for all 	 ∈ �0�1
,

if x � y, then 	x+ �1−	�R � 	y+ �1−	�R. The main

difference between stochastic dominance and gam-

ble monotonicity is that in the definition of stochastic

dominance all lotteries R are allowed, whereas in the

definition of gamble monotonicity R has to be risky.

Corollary 4.2. Suppose that � can be represented by
the gambling effect model. If u�·� and v�·� are ordinally
equivalent, then � satisfies stochastic dominance.

Transitivity
The gambling effect model can violate transitivity. For

example, let v�x�=√
x, u�x�= x�P = �100�0�5�0��Q=

�81�0�5�9�, and x = 30. Then P � Q and Q � x, but

x � P. The next theorem shows that the exclusion of

intransitivities implies that u�·� and v�·� can be chosen

equal, i.e., that EU holds. To the extent that transi-

tivity is normative, the theorem limits the prescrip-

tive applicability of the gambling effect model. It does

not necessarily limit the descriptive applicability of

the model because violations of transitivity that are

consistent with our model are commonly observed in

empirical research.

Theorem 4.3. Suppose that � can be represented by the
gambling effect model. The following two statements are
equivalent:
(i) � satisfies transitivity and u�·� and v�·� are ordinally

equivalent.
(ii) EU holds.

5. Elicitation
Let M�m ∈ � , M � m. Set u�M� = 1 and u�m� = 0.

Let x ∈ � , x �= M , x �= m, and fix 	 ∈ �0�1�. The func-

tion u�·� can be elicited through a lottery equivalence

procedure (McCord and de Neufville 1986). The elic-

itation procedure is described in Table 2, where � is

the parameter that must be elicited. The first row of

Table 2 The Elicitation of u�·�
Case �M���x�� �M���m� �M���x�≺ �M���m�

Question �M���m�∼ �x���m� �M���m�∼ �M���x�

u�x� �/� ��−��/�1−��

the table shows the question that must be asked; the

second shows the resulting utility.

Obviously, it is recommended to use easily per-

ceived values of 	 in the elicitation of u�·�, e.g. 	 =
1/2. The function v�·� can be elicited through stan-

dard probability equivalence or certainty equivalence

questions (Farquhar 1984).

6. Certainty Preference
The empirical literature suggests that v�·� is more

concave than u�·�. We now characterize this case.

Throughout this section, we assume that � is a con-

nected topological space. An outcome yp ∈� is a con-
ditional certainty equivalent of a lottery P ∈ � if there

exists a 	 ∈ �0�1� and a lottery R ∈� such that 	yp +
�1−	�R ∼ 	P + �1−	�R. The gambling effect model

implies that for R ∈� if for some 	 ∈ �0�1�, 	yp + �1−
	�R ∼ 	P + �1−	�R, then for all 	 ∈ �0�1�, 	yp + �1−
	�R ∼ 	P + �1−	�R. The preference relation � satis-

fies gambling aversion if for all P ∈ �, yp � xp, where

xp is the certainty equivalent of P. The function v�·�
is a concave transformation of u�·� if v = f �u� with

f �·� strictly increasing and concave, i.e., for all x ∈ �
f ′�x� > 0 and f ′′�x� < 0.

Theorem 6.1. Suppose that � can be represented by the
gambling effect model with u�·� and v�·� ordinally equiv-
alent and continuous. The following two statements are
equivalent:
(i) � satisfies gambling aversion.
(ii) v�·� is a concave transformation of u�·�.

7. Risk Aversion
The use of separate functions u�·� and v�·� allows

the decomposition of attitudes towards gambling and

“pure” attitudes towards risk. Attitudes towards gam-

bling apply to comparisons where one lottery is risk-

less. Pure attitudes towards risk, i.e., attitudes that

are not confounded by the gambling effect, apply to

comparisons between risky lotteries. To consider risk

attitudes, we assume that � is a compact interval of

the real line, that u�·� and v�·� are increasing in x, and

are twice differentiable.
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Mean-Preserving Spreads
Theorem 7.1 shows that aversion to mean-preserving

spreads, which in expected utility is equivalent to

concavity of the utility function, corresponds in the

gambling effect model to concavity of both u�·�
and v�·�.
Theorem 7.1. Suppose that � can be represented by

the gambling effect model. The following statements are
equivalent:
(i) For all P ∈ �, Q ∈ �, if Q is a mean-preserving

spread of P, then P � Q.
(ii) u�·� and v�·� are concave.

The Risk Premium and the Gambling Premium
The interpretation of the risk premium of a lottery

P, defined as ep − xp with ep and xp the expected

value and the certainty equivalent of P, respectively,

is ambiguous in the gambling effect model, because

P ∼ xp does not imply u�P� = u�xp� unless u�·� = v�·�.
To resolve this ambiguity, we split the risk premium

into two separate premiums, the conditional risk pre-
mium ep −yp and the gambling premium yp −xp, where

yp is the conditional certainty equivalent of P. Clearly,

the risk premium is equal to the sum of the condi-

tional risk premium and the gambling premium. The

gambling premium is equal to zero for all P ∈� if and

only if EU holds and yp is equal to xp. Because v�·� is
strictly increasing, the gambling premium is nonneg-

ative if and only if � satisfies gambling aversion.

Comparative Risk Aversion and Gambling Aversion
In the gambling effect model it makes sense to say

that the Arrow-Pratt measure −u′′�x�/u′�x� captures

“pure” risk aversion, i.e., the risk aversion that is

observed in comparisons between risky lotteries. The-

orem 6.1 suggests that we can define −f ′′�u�/f ′�u�

as a measure of comparative gambling aversion. Let

�i denote the preference relation of individual i� i =
1�2. For P ∈ �, let xi�p denote individual i’s cer-

tainty equivalent of lottery P. xi�p is uniquely defined

because vi�·� is strictly increasing. The preference

relation �1 is more gambling averse than the prefer-

ence relation �2 if for all x ∈ � , P�Q ∈ �, R ∈ �,
	 ∈ �0�1� such that 	x+ �1−	�R ∼1 	P + �1−	�R and

	x+ �1−	�R ∼2 	Q+ �1−	�R, x1� p ≤ x2� q . That is, if

Individual 1’s conditional certainty equivalent of P

equals Individual 2’s conditional certainty equivalent

of Q, then Individual 1 is more gambling averse than

Individual 2 if his certainty equivalent of P does not

exceed Individual 2’s certainty equivalent of Q.

Theorem 7.2. Let vi = fi�ui�, i= 1�2. Suppose that �1

and �2 can be represented by the gambling effect model.
The following two statements are equivalent:
(i) �1 is more gambling averse than �2.
(ii) For all u ∈ �,

−f ′′
1 �u�

f ′
1�u�

≥−f ′′
2 �u�

f ′
2�u�

�

Individual 1 is more risk averse than Individual 2 if for

every risky lottery P Individual 1 assigns neither a

higher certainty equivalent nor a higher conditional

certainty equivalent to P than Individual 2. Formally,

for all P ∈ �, Q ∈ �, 	 ∈ �0�1
 if 	y1� p + �1−	�Q ∼1

	P + �1− 	�Q and 	y2� p + �1− 	�Q ∼2 	P + �1− 	�Q,

then y1� p ≤ y2� p.

Theorem 7.3. Suppose that �1 and �2 can be repre-
sented by the gambling effect model. The following two
statements are equivalent:
(i) �1 is more risk averse than �2.
(ii) for all x ∈ � ,

−u′′
1�x�

u′
1�x�

≥−u′′
2�x�

u′
2�x�

and for all u ∈ ��

−f ′′
1 �u�

f ′
1�u�

≥−f ′′
2 �u�

f ′
2�u�

�

8. Conclusion
To generate fruitful applications, a decision model

should satisfy three requirements: It should be intu-

itively appealing, descriptively accurate, and applica-

ble in practice. We believe that the gambling effect has

intuitive appeal, being based on the notion that the

presence of riskless lotteries triggers different emo-

tions and changes people’s evaluation process. In gen-

eral, there is a trade-off between the requirements

of descriptive accuracy and practical applicability.

Descriptive accuracy requires the model to account
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for many preference patterns. Practical applicability

limits the number of preference patterns the model

can explain, because the complexity of the elicitation

task generally increases with the number of patterns

consistent with the model.

Harless and Camerer (1994) conclude concerning

the trade-off between descriptive accuracy and parsi-

mony that: “expected utility [is] too lean: [it] could

explain the data better by allowing a few more com-

mon patterns. Other theories, such as mixed fanning

and rank-dependent expected utility, are too fat: They

allow a lot of patterns which are rarely observed”

(p. 1285). The gambling effect model deviates mini-

mally from expected utility. The violations of expected

utility that are consistent with our model are fre-

quently observed. For example, the most common

violations of expected utility in Loomes et al. (1991)

and in Sopher and Gigliotti (1993) are violations

allowed by the gambling effect model. There are sev-

eral empirically observed violations of EU that cannot

be explained by our model, for example, frequently

observed violations of expected utility on the bound-

aries of the probability triangle that involve no risk-

less lotteries. The extent to which such violations are

problematic for our theory, indicating that our the-

ory is too lean, depends on how systematic these vio-

lations are. The literature gives no clear answer to

this question. For example, regarding violations of EU

at the boundaries of the probability triangle, Starmer

and Sugden (1989) conclude that: “the most striking

feature of our results is the absence of any obvious

general pattern to the violation of EU” (p. 99).

The primary use of our theory is for the decision

analyst who wants a model that captures the main

deviations from expected utility, but that is applicable

in practice. We hope that the gambling effect model

provides him with such a model.
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Appendix: Proofs
Proof of Theorem 3�1� It is straightforward to verify that the

gambling effect model implies conditions (i)–(vi). Let us therefore

assume conditions (i)–(vi) and derive the gambling effect model.

Fishburn (1980) and Diecidue et al. (2001) proved that �r has an

EU representation. It remains to prove that �s has an EU represen-

tation.

Lemma 1. For all P�Q ∈ �, 	, � ∈ �0�1
, if x ∼s P, y ∼s Q, x′ ∼s

	P+ �1−	�Q, y′ ∼s �P+ �1−��Q, and x �s y, then x′ �s y′ iff 	 > �.

Proof. Let x∼s P, y ∼s Q, x′ ∼s 	P+�1−	�Q, y′ ∼s �P+�1−��Q,

and x �s y. Suppose that 	 > �. Consider 	P+�1−	�Q= �	−��P+
�1− �	−���R and �P + �1−��Q = �	−��Q+ �1− �	−���R with

R =
(

�

1− �	−��
P + 1−	

1− �	−��
Q

)
∈��

S-independence implies that x′ �s y′.
Suppose now that x′ �s y′. Suppose that � ≥ 	. If � = 	, then

	P + �1−	�Q = �P + �1−��Q, and it follows by transitivity that

x′ ∼s y′, a contradiction. Suppose, therefore, that � > 	. Consider

	P+ �1−	�Q = ��−	�Q+ �1− ��−	��R′ and �P+ �1−��Q = ��−
	�P + �1− ��−	��R′ with

R′ =
(

	

1− ��−	�
P + 1−�

1− ��−	�
Q

)
∈��

S-independence implies that y′ �s x′, a contradiction. �

Let x ∼s P�y ∼s Q�x �s z �s y. By S-continuity there exists a 	 ∈
�0�1� such that z∼s 	P+�1−	�Q. Lemma 1 implies that 	 is unique.

For suppose that both z ∼s 	1P+ �1−	1�Q and z ∼s 	2P+ �1−	2�Q

with 	1 > 	2. Then Lemma 1 implies that z �s z, a contradiction.

Similarly 	2 > 	1 leads to a contradiction. Hence, 	1 = 	2 and 	 is

unique.

Lemma 2. For all P�Q�R ∈ ��	 ∈ �0�1
, if x ∼s P�y ∼s Q�x′ ∼s

	P + �1−	�R, y′ ∼s 	Q+ �1−	�R, and x ∼s y, then x′ ∼s y′.

Proof. By S-independence, we have x′ �s y′. Suppose that x′ �s

y′. P = 0 ·�	P+�1−	�R�+P = 0 ·�	Q+�1−	�R�+P. Because x ∼s P,

it follows from x′ ∼s 	P + �1−	�R, y′ ∼s 	Q+ �1−	�R, and x′ � y′

by S-independence that x �s x, which contradicts weak ordering of

�s . Hence, x′ ∼s y′. �

We now define the utility function. Suppose first that the set �

contains a best outcome M and a worst outcome m. That is, for all

x ∈��M �s x, and x �s m. This assumption will be relaxed shortly.

Define for all x ∈ ��v�x� = 	 where 	 is the unique number such

that x ∼s 	M + �1−	�m. Obviously, this implies that v�M� = 1 and

v�m� = 0. If v�x� = 	 > v�y� = �, then we have x ∼s 	M + �1−	�m

and y ∼s �M + �1−��m and Lemma 1 implies that x �s y. Lemma

1 also implies that if x �s y, then v�x�= 	 > v�y�=�. If x ∼s y, then

v�x� = v�y� because 	 is uniquely determined. If v�x� = v�y� = 	,

then x ∼s 	M + �1−	�m ∼s y and by transitivity x ∼s y. Hence, for

all x�y ∈� , x �s y iff v�x� ≥ v�y�. For any lottery P ∈�, there is an

Management Science/Vol. 48, No. 6, June 2002 809



BLEICHRODT AND SCHMIDT
A Context-Dependent Model of the Gambling Effect

outcome z ∈ � such that z ∼s P by assumption. Define v�P� = v�z�.

Then v�·� preserves �s on �.

We next prove that v�·� is linear, i.e., v�
∑n

i=1 pixi� =
∑n

i=1 piv�xi�.

Denote P =∑n
i=1 pixi and let z∈� be such that z∼s P. Construct the

lottery P�1� by replacing x1 in P by the lottery 	1M + �1−	1�m ∼s

x1. By Lemma 2 and transitivity, z ∼s P�1�. Proceed by constructing

the lottery P�i� from P�i−1�, i = 2� � � � �n, by replacing xi by 	iM +
�1− 	i�m ∼s xi. By Lemma 2 and transitivity we have z ∼s P�i�,

i = 2� � � � �n. Now P�n� = ∑n
i=1 pi	iM + �1−∑n

i=1 pi	i�m. Hence P ∼s

z∼s P�n� implies v�P�= v�z�=∑n
i=1 pi	i =

∑n
i=1 piv�xi�. Hence, v�·� is

linear.

Suppose now that � contains no best and worst outcomes with

respect to �s . Then for each lottery P there are outcomes x�y ∈ �

such that x �s P �s y. Let �xy denote the set �P ∈�
 x �s P �s y�. For

all z ∈ � ∩�xy define vxy�z� = 	 if z ∼s 	x+ �1−	�y. For all P ∈ �xy

define v�P� = v�z� if z ∼s P. The proof that vxy is order preserving

and linear on �xy is as in the case above where � contains a best

and a worst outcome.

The rest of the proof is identical to Jensen (1967). Fix outcomes

R�r ∈ � such that x �s R �s r �s y. For any P ∈�xy define

Hxy�P� = vxy�P�−v�r�

v�R�−v�r�
�

Hxy is order preserving and linear because vxy is. Two functions

Hxy and Hvw are identical on common domain. Hence, we can

define for all P ∈ �, v�P� = Hxy�P� where the choice of x and y

is immaterial. v�·� is bounded and unique up to positive linear

transformations. �

Proof of Theorem 4�1� Let R ∈ �. Then for all x�y ∈ ��	 ∈
�0�1�, the lotteries 	x+ �1−	�R and 	y+ �1−	�R are both risky.

Suppose first that u�·� and v�·� are ordinally equivalent. Let x�y ∈
� . If x � y, then v�x� ≥ v�y� by the gambling effect model. Because

u�·� and v�·� are ordinally equivalent, also u�x� ≥ u�y�. Hence, by

the gambling effect model 	x+ �1−	�R � 	y + �1−	�R. Suppose

next that 	x + �1− 	�R � 	y + �1− 	�R. Then u�x� ≥ u�y� by the

gambling effect model, v�x� ≥ v�y� by ordinal equivalence of u�·�
and v�·�, and x � y by the gambling effect model.

Suppose now that gamble monotonicity holds. Let x�y ∈ � . If

v�x� ≥ v�y�, then x � y by the gambling effect model. Hence, 	x+
�1−	�R � 	y+ �1−	�R by gamble monotonicity, and u�x� ≥ u�y�

by the gambling effect model. If u�x� ≥ u�y�, then 	x+ �1−	�R �

	y+ �1−	�R by the gambling effect model, x � y by gamble mono-

tonicity, and v�x� ≥ v�y� by the gambling effect model. �

Proof of Corollary 4�2� Let x�y ∈ ��x � y. Then v�x� ≥ v�y�

by the gambling effect model. If R is risky, then the proof that 	x+
�1−	�R � 	y+ �1−	�R follows from Theorem 4.1. If R is riskless

but different from x and y, then 	x+ �1−	�R � 	y + �1−	�R iff

u�x� ≥ u�y�, which holds by ordinal equivalence. If R is riskless

and equal to x or y, then either 	x+ �1−	�R or 	y + �1−	�R is

riskless, and hence the preference comparison is made in terms

of �s . Because this preference relation can be represented by an

EU functional, stochastic dominance is satisfied and thus 	x+ �1−
	�R � 	y+ �1−	�R. �

Proof of Theorem 4�3� It is well known that EU satisfies tran-

sitivity. Hence, we assume transitivity and the gambling effect

model and derive EU. Let P�Q ∈ � and let xp ∼ P�xq ∼ Q.

Now
∑n

i=1 piu�xi� >
∑n

i=1 qiu�xi� implies P � Q by the gambling

effect model. By transitivity, xp � xq , and by the gambling effect

model,
∑n

i=1 piv�xi� >
∑n

i=1 qiv�xi�. If
∑n

i=1 piv�xi� >
∑n

i=1 qiv�xi�, then

xp � xq by the gambling effect model, P � Q by transitivity, and∑n
i=1 piu�xi� >

∑n
i=1 qiu�xi� by the gambling effect model. Thus,∑n

i=1 piu�xi� >
∑n

i=1 qiu�xi� iff
∑n

i=1 piv�xi� >
∑n

i=1 qiv�xi�. It can be

shown similarly that
∑n

i=1 piu�xi� =
∑n

i=1 qiu�xi� iff
∑n

i=1 piv�xi� =∑n
i=1 qiv�xi� and that

∑n
i=1 piu�xi� <

∑n
i=1 qiu�xi� iff

∑n
i=1 piv�xi� <∑n

i=1 qiv�xi�. Thus, u�·� and v�·� are cardinally equivalent and can

be chosen identical. �

Proof of Theorem 6�1� Because � is a connected topological

space and u�·� is continuous, each lottery P ∈� has at least one con-

ditional certainty equivalent. Pratt (1964, Theorem 1) has shown for

real outcomes and u�·� and v�·� increasing and continuous that for

all P ∈ ��v�·� is a concave transformation of u�·� iff the certainty

equivalent of P with respect to u�·� is preferred to the certainty

equivalent of P with respect to v�·�. Remark VII.6.6. inWakker (1989)

generalizes Pratt’s result to connected topological spaces and u�·�
and v�·� ordinally equivalent and continuous. �

Proof of Theorem 7�1� Let Q be a mean-preserving spread of

P. By Theorem 2 in Rothschild and Stiglitz (1970), if P ∈ �, then

P �Q iff u�·� is concave; if P ∈� , then P �Q iff v�·� is concave. �

Proof of Theorem 7�2� Suppose that for some x ∈��P�Q ∈�,

R ∈��	 ∈ �0�1��	x+ �1−	�R∼1 	P+ �1−	�R and 	x+ �1−	�R∼2

	Q+ �1−	�R. By the gambling effect model, u1�x� = �ipi ·u1�xi�,

u2�x� = �iqi ·u2�xi�, f1�u1�x1� p�� = �ipi · f1�u1�xi��, and f2�u2�x2� q�� =
�iqi ·f2�u2�xi��. It now follows immediately from Theorem 1 in Pratt

(1964) and f and u�·� increasing that x1� p ≤ x2� q iff f1�·� is a concave
transformation of f2�·�, i.e., iff for all u ∈ �,

− f ′′
1 �u�

f ′
1�u�

≥− f ′′
2 �u�

f ′
2�u�

� �

Proof of Theorem 7�3� Suppose first that (ii) holds. If 	 ∈ �0�1�,

then (i) follows from Theorem 1 in Pratt (1964). Let 	 = 1. The

combination of for all x ∈ � ,

−u′′
1�x�

u′
1�x�

≥−u′′
2�x�

u′
2�x�

and for all u ∈ �,

− f ′′
1 �u�

f ′
1�u�

≥− f ′′
2 �u�

f ′
2�u�

implies that for all x ∈ � ,

−v′′
1 �x�

v′
1�x�

≥−v′′
2 �x�

v′
2�x�

�

Statement (i) follows by Theorem 1 in Pratt (1964).

Suppose now that (i) holds. If 	 ∈ �0�1�, then Theorem 1 in Pratt

(1964) implies that for all x ∈ � ,

−u′′
1�x�

u′
1�x�

≥−u′′
2�x�

u′
2�x�

�
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i.e., Individual 1 has a higher Arrow-Pratt measure of absolute risk

aversion than Individual 2. Let 	 = 1. Suppose, contrary to state-

ment (ii), that for some u ∈ � ,

− f ′′
1 �u�

f ′
1�u�

< − f ′′
2 �u�

f ′
2�u�

�

Fix x ∈� and let u1�x�= u2�x�= u which is allowed by the unique-

ness properties of u1 and u2. Take an arbitrary � > 0. Because u1

and u2 are continuous there exist �1 and �2 such that for i = 1�2

if �y−x� < �i , then �ui�y�−ui�x�� < �. Define � =min��1��2�. Let P

be the lottery ( 1
2
�x+�� 1

2
�x−��. Because ui is increasing, i = 1�2,

EUi�P�= ui�x�+�. It follows that if �→ 0, the conditional certainty

equivalent of P goes to x both for Individual 1 and for Individual

2. Theorem 1 in Pratt (1964) implies a strict version of Theorem 7.2,

which says that, if

− f ′′
1 �u�

f ′
1�u�

< − f ′′
2 �u�

f ′
2�u�

�

then Individual 1’s certainty equivalent of P is higher than that of

Individual 2. This contradicts that Individual 1 is more risk averse

than Individual 2. �

References
Allais, M. 1953. Le comportement de l’homme rationnel devant

le risque: Critique des postulats et axiomes de l’Ecole Améri-

caine. Econometrica 21 503–546.

Anand, P. 1987. Are the preference axioms really rational? Theory
Decision 23 189–214.

Becker, J. L., R. K. Sarin. 1987. Lottery dependent utility. Manage-
ment Sci. 33 1367–1382.

Bell, D. E. 1982. Regret in decision making under uncertainty. Oper.
Res. 30 961–981.

Camerer, C. 1992. Recent tests of generalizations of expected utility

theory. W. Edwards, ed. Utility: Theories, Measurement and Appli-
cations. Kluwer Academic Publishers, Boston, MA, 207–251.

Cohen, M., J.-Y. Jaffray. 1988. Certainty effect versus probability dis-

tortion: An experimental analysis of decision making under

risk. J. Experiment. Psych.: Human Perception Performance 14
554–560.

Conlisk, J. 1993. The utility of gambling. J. Risk Uncertainty 6
255–275.

Diecidue, E., U. Schmidt, P. P. Wakker. 2001. The gambling effect

reconsidered. Working paper, CREED, University of Amster-

dam, Amsterdam, The Netherlands.

Dyer, J. S., R. K. Sarin. 1982. Relative risk aversion. Management Sci.
28 875–886.

Farquhar, P. 1984. Utility assessment methods. Management Sci. 30
1283–1300.

Fishburn, P. C. 1980. A simple model for the utility of gambling.

Psychometrika 45 435–448.

. 1982. Non-transitive measurable utility. J. Math. Psych. 26
31–67.

. 1991. Nontransitive preferences in decision theory. J. Risk
Uncertainty 4 113–134.

Gafni, A., S. Birch, A. Mehrez. 1993. Economics, health, and health

economics: HYEs versus QALYs. J. Health Econom. 12 325–339.

Groes, E., H. J. Jacobsen, B. Sloth, T. Tranæs. 1999. Testing the

intransitivity explanation of the Allais paradox. Theory Decision
47 229–245.

Harless, D., C. F. Camerer. 1994. The predictive utility of general-

ized expected utility theories. Econometrica 62 1251–1289.

Huber, J., C. Puto. 1983. Market boundaries and product choice:

Illustrating attraction and substitution effects. J. Consumer Res.
10 31–44.

, J. W. Payne, C. Puto. 1982. Adding asymmetrically dominated

alternatives: Violations of regularity and the similarity hypoth-

esis. J. Consumer Res. 9 90–98.

Humphrey, S. J. 1998. More mixed results on boundary effects.

Econom. Lett. 61 79–84.

Jensen, N. E. 1967. An introduction to Bernoullian utility theory:

I. Utility functions. Scand. J. Econom. 69 163–183.

Kahneman, D., A. Tversky. 1979. Prospect theory: An analysis of

decision under risk. Econometrica 47 263–291.

Lakshmi-Ratan, R. A., S. G. Lanning, J. A. Rotondo. 1991. An aggre-

gate contextual choice model for estimating demand for new

products from a laboratory choice experiment. J. Bus. Res. 23
201–218.

Loomes, G. C. 1995. The myth of the HYE. J. Health Econom. 14 1–7.
, R. Sugden. 1982. Regret theory: An alternative theory of ratio-

nal choice. Econom. J. 92 805–824.

, C. Starmer, R. Sugden. 1991. Observing violations of transi-

tivity by experimental methods. Econometrica 59 425–439.

Luce, R. D. 1956. Semiorders and a theory of utility discrimination.

Econometrica 24 178–191.

. 2000. Utility of Gains and Losses: Measurement-Theoretical and
Experimental Approaches. Lawrence Erlbaum Associates, Inc.,

Mahwah, NJ.

, A. A. J. Marley. 2000. On elements of chance. Theory Decision
49 97–126.

MacCrimmon, K. R. 1968. Descriptive and normative implications

of the decision-theory postulates. K. Borch, J. Mossin, eds. Risk
and Uncertainty. St. Martin’s Press, New York, 3–23.

Marley, A. A. J. 1991. Context dependent probabilistic choice mod-

els based on measures of binary advantage. Math. Soc. Sci. 21
201–231.

McCord, M., R. de Neufville. 1986. Lottery equivalents: Reduction

of the certainty effect problem in utility assessment. Manage-
ment Sci. 32 56–60.

Mehrez, A., A. Gafni. 1989. Quality-adjusted life-years, utility the-

ory and healthy years equivalents. Medical Decision Making 9
142–149.

Neilson, W. S. 1992. Some mixed results on boundary effects.

Econom. Lett. 39 275–278.

Pratt, J. W. 1964. Risk aversion in the small and in the large. Econo-
metrica 32 83–98.

Rothschild, M., J. E. Stiglitz. 1970. Increasing risk I: A definition.

J. Econom. Theory 2 225–243.

Schmidt, U. 1998. A measurement of the certainty effect. J. Math.
Psych. 42 32–47.

Management Science/Vol. 48, No. 6, June 2002 811



BLEICHRODT AND SCHMIDT
A Context-Dependent Model of the Gambling Effect

. 2001. Lottery dependent utility: A reexamination. Theory Deci-
sion 50 35–58.

Simonson, I., A. Tversky. 1992. Choice in context: Contrast and

extremeness aversion. J. Marketing Res. 29 231–295.

Sopher, B., G. Gigliotti. 1993. A test of generalized expected utility

theory. Theory Decision 35 75–106.

Starmer, C. 1992. Testing new theories of choice under uncertainty

using the common consequence effect. Rev. Econom. Stud. 59
813–830.

. 2000. Developments in non-expected utility theory: The hunt

for a descriptive theory of choice under risk. J. Econom. Litera-
ture 28 332–382.

, R. Sugden. 1989. Violations of the independence axiom in

common ratio problems: An experimental test of some com-

peting hypotheses. Ann. Oper. Res. 19 79–101.

Sugden, R. 1985. Why be consistent? A critical analysis of consis-

tency requirements in choice theory. Economica 52 167–183.

. 1993. An axiomatic foundation for regret theory. J. Econom.
Theory 60 159–180.

Tversky, A. 1967. Additivity, utility, and subjective probability.

J. Math. Psych. 4 175–201.

, I. Simonson. 1993. Context-dependent preferences. Manage-
ment Sci. 39 1179–1189.

von Neumann, J., O. Morgenstern. 1944. The Theory of Games
and Economic Behavior. Princeton University Press, Princeton,

NJ.

Wakker, P. P. 1989. Additive Representations of Preferences: A New
Foundation of Decision Analysis. Kluwer Academic Publishers,

Dordrecht, The Netherlands.

. 1996. A criticism of healthy-years equivalents. Medical Deci-
sion Making 16 207–214.

, D. Deneffe. 1996. Eliciting von Neumann-Morgenstern utili-

ties when probabilities are distorted or unknown. Management
Sci. 42 1131–1150.

Wedell, D. H. 1991. Distinguishing among models of contextually

induced preference reversals. J. Experiment. Psych.: Learning,
Memory, Cognition 17 767–778.

Accepted by Martin Weber; received May 2, 2001. This paper was with the authors 2 months for 2 revisions.

812 Management Science/Vol. 48, No. 6, June 2002


