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An important reason why people violate expected utility theory is probability weight-
ing. Previous studies on the probability weighting function typically assume a specific

parametric form, exclude heterogeneity in individual preferences, and exclusively consider
monetary decision making. This study presents a method to elicit the probability weighting
function in rank-dependent expected utility theory that makes no prior assumptions about the
functional form of the probability weighting function. We use both aggregate and individual
subject data, thereby allowing for heterogeneity of individual preferences, and we examine
probability weighting in a new domain, medical decision making. There is significant evi-
dence of probability weighting both at the aggregate and at the individual subject level. The
modal probability weighting function is inverse S-shaped, displaying both lower subadditiv-
ity and upper subadditivity. Probability weighting is in particular relevant at the boundaries
of the unit interval. Compared to studies involving monetary outcomes, we generally find
more elevation of the probability weighting function. The robustness of the empirical findings
on probability weighting indicates its importance. Ignoring probability weighting in modeling
decision under risk and in utility measurement is likely to lead to descriptively invalid theories
and distorted elicitations.
(Nonexpected Utility; Decision Theory; Probability Weighting; Utility Assessment;Medical
Decision Making)

It is by nowwidely acknowledged that expected utility
theory is not valid as a descriptive theory of choice un-
der risk. An important reason why people violate ex-
pected utility theory is that their preferences between
risky prospects are not linear in probabilities. In re-
sponse to the observed violations of expected utility
theory, several nonexpected utility theories have been
proposed. The most important theories among these
nonexpected utility theories are rank-dependent ex-
pected utility theory (Quiggin 1981, Yaari 1987) and
its derivative cumulative prospect theory (Starmer and

Sugden 1989, Luce and Fishburn 1991, Tversky and
Kahneman 1992). An essential characteristic of the lat-
ter two theories is that probabilities do not enter lin-
early in the evaluation formula, but are transformed
into decision weights through a cumulative probabil-
ity weighting function. The nonlinearity of preferences
in probability makes it possible to explain choice pat-
terns that are at variance with expected utility theory.
A disadvantage of using transformed probabilities in
the evaluation formula is that the elicitation or estima-
tion of the model becomes more involved, because in
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addition to the utility function, the probability weight-
ing function has to be elicited.
Previous studies that elicited the probability weight-

ing function in rank-dependent expected utility the-
ory or cumulative prospect theory generally have
three characteristics in common. First, they estimated
both the utility function and the probability weight-
ing function by parametric techniques (Tversky and
Kahneman 1992, Camerer and Ho 1994, Tversky and
Fox 1995, Wu and Gonzalez 1996). Specific inverse
S-shaped functional forms were suggested for the
probability weighting function (Lattimore et al. 1992,
Tversky and Kahneman 1992, Prelec 1998). A dis-
advantage of this approach is that the estimations
depend critically on the assumed functional form. If
the true functional form is different from the assumed
functional form, then conclusions drawn from the esti-
mations need no longer hold. Several studies (Currim
and Sarin 1989, Wu and Gonzalez 1996) used non-
parametric methods to derive qualitative properties
of the probability weighting function. However, these
nonparametric techniques were not used to estimate
quantitative probability weights.
Second, these studies have been based on aggregate

data: They either used a single-agent stochastic choice
model or fitted the weighting function to the median
subject. Thereby, heterogeneity of individual prefer-
ences is ruled out.
Third, they focused on one specific outcome do-

main: money. Little is known about the generalization
of their findings to other decision domains. Previ-
ous research suggests that probability weighting may
depend on the decision context. Currim and Sarin
(1989), for instance, argue that the outcome level may
affect probability weighting. Several studies report
evidence that the shape of the probability weighting
function in decision under uncertainty depends on the
source of the uncertainty (Heath and Tversky 1991,
Tversky and Fox 1995, Kilka and Weber 1998). Sim-
ilarly, the outcome domain can affect probability
weighting. Wakker and Deneffe (1996) found higher
risk aversion for life duration than for money even
though utility curvature was similar for these out-
comes. Under rank-dependent expected utility theory,
this can only be explained by a difference in probabil-
ity weighting. Recently, Rottenstreich and Hsee (1999)

have presented evidence that probability weighting
depends on the outcome domain.
This article generalizes the aforementioned stud-

ies on the probability weighting function in rank-
dependent expected utility theory in three respects.
First, we elicit the probability weighting function
without making any prior assumptions about its func-
tional form. That is, we provide a parameter-free elic-
itation of the probability weighting function. Second,
we use both aggregate data and individual subject
data. Third, we examine probability weighting in a
new domain: medical decision making.
We apply the trade-off method of Wakker and

Deneffe (1996) to elicit first the utility function and
then the probability weighting function, using the
elicited utilities as inputs. Independently from us,
two other papers have also provided parameter-free
assessments of the probability weighting function us-
ing both aggregate data and individual subject data.
Gonzalez and Wu (1999) use an alternating least
squares approach to estimate the probability weight-
ing function and the utility function simultaneously.
Similar to our study, Abdellaoui (2000) applies the
trade-off method to elicit the utility function first
and then the probability weighting function, using
the elicited utilities as inputs. Even though he also
uses the trade-off method, Abdellaoui’s procedure is
different from ours. We compare our approach with
Abdellaoui’s approach in §2. Both Gonzalez and Wu
and Abdellaoui use monetary outcomes.
In what follows, §1 reviews rank-dependent ex-

pected utility theory and empirical evidence on prob-
ability weighting. Section 2 describes the trade-off
method and our procedure to elicit the probabil-
ity weighting function. Section 3 describes the ex-
perimental procedures used to elicit utilities and
probability weights. The results are described in §4.
Section 5 concludes.

1. Rank-Dependent Expected Utility
Theory

Let X be a set of outcomes, in our case, life duration. We
study decision under risk, and therefore assume a set
of simple probability distributions P defined over X.
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A typical element of P is the lottery [p1, x1; : : :; pm, xm],
which yields outcome xi ∈X with probability pi. Here
m is a positive integer and p1 + · · · + pm = 1. Two lot-
teries [p1, x1; : : :; pm, xm] and [p1, y1; : : :; pm, ym] that in-
duce the same ranking of outcomes are comonotonic. Let
[p1, x1; : : :; pm, xm] be a lottery for which x1� · · ·�xm,
where � stands for ’’at least as good as’’. The rank-
dependent expected utility of this lottery is equal to

RDEU[p1, x1; : : :; pm, xm] =
m∑

i=1
�iu(xi), (1)

where �i=w(
∑i

j=1pi)−w(
∑i−1

j=1 pi), in particular �1 =
w(p1). The probability weighting functionw is a strictly in-
creasing function from [0, 1] to [0, 1] with w(0)=0 and
w(1) =1. If w is the identity function, rank-dependent
expected utility theory is identical to expected utility
theory.
Several studies have provided preference conditions

allowing different shapes of the probability weighting
function (Tversky and Wakker 1995, Wu and Gonza-
lez 1996, Wu and Gonzalez 1998, Prelec 1998). Tversky
and Wakker define two conditions to characterize the
probability weighting function: lower subadditivity
and upper subadditivity. Lower subadditivity means
that a lower interval [0, q] has more impact on a de-
cision maker than an intermediate interval [p, p + q],
provided that p + q is bounded away from one. Alter-
natively stated, lower subadditivity says that a change
from impossible to possible has a stronger impact on
an individual’s decision than an equal change from
possible to more possible. This effect is referred to as
the possibility effect. Upper subadditivity says that an up-
per interval [1−q, 1] has more impact than an interme-
diate interval [p, p+q], provided that p is bounded away
from zero. Hence, a change from possible to certain
has more impact than an equal change from possible to
more possible. This effect is referred to as the certainty
effect. The effect of lower subadditivity and upper
subadditivity is to produce an inverse S-shaped
probability weighting function, overweighting small
probabilities and underweighting intermediate and
high probabilities. In the context of rank-dependent
expected utility, the probability weighting function
satisfies lower subadditivity if w(q)≥w(p + q) − w(p),
provided w(p + q) is bounded away from one, and it

satisfies upper subadditivity if 1−w(q)≥w(p+q)−w(p),
provided w(p) is bounded away from zero.
Several parametric specifications of the probability

weighting function have been suggested in the litera-
ture. Tversky and Kahneman (1992) proposed the fol-
lowing one-parameter specification:

w(p) =
p�

[p� + (1− p)�]
1
�
: (2)

This function is monotonic and has an inverse S-shape
for values of � between 0.27 and 1.
Gonzalez and Wu (1999) suggest a two-parameter

specification for the inverse S-shaped probability
weighting function, adopted before by Goldstein and
Einhorn (1987), Lattimore et al. (1992), and Tversky
and Fox (1995):

w(p) =
�p�

�p� + (1− p)� : (3)

In Equation (3), the parameter � primarily controls cur-
vature of the probability weighting function, i.e., the
extent to which people are able to discriminate be-
tween differences in probability, and the parameter �
primarily controls elevation, i.e., the extent to which
people find the chance domain attractive.
Prelec (1998) has axiomatized alternative specifica-

tions for the inverse S-shaped probability weighting
function. His proposed one-parameter specification is

w(p) = exp (−(− ln p)�); (4)

and his two-parameter specification is

w(p) = exp (−�(− ln p)�): (5)

The interpretation of the parameters � and � is similar
to Equation (3): � primarily controls curvature and �
primarily controls elevation.
Table 1 summarizes the results of some empirical

studies that estimated the parameters in the above
specifications. Cumulative prospect theory allows the
parameters to be different for gains and losses. All esti-
mates are consistent with an inverse S-shaped weight-
ing function.
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Table 1 Empirical Studies on the Probability Weighting Function

Functional Form Parameter Estimates

w(p) =
p�

[p� + (1 − p)�]
1

�
Tversky and Kahneman (1992):
� = 0.61 (gains), � = 0.69 (losses)

Camerer and Ho (1994): � = 0.56 (gains)
Wu and Gonzalez (1996): � = 0.71 (gains)

Abdellaoui (2000): � = 0.60 (gains), � = 0.70 (losses)

w(p) =
�p�

�p� + (1 − p)�
Wu and Gonzalez (1996): � = 0.84, � = 0.68 (gains)
Gonzalez and Wu (1999): � = 0.77, � = 0.44 (gains)
Tversky and Fox (1995): � = 0.77, � = 0.69 (gains)

Abdellaoui (2000): � = 0.65, � = 0.60 (gains)
Abdellaoui (2000): � = 0.84, � = 0.65 (losses)

w(p) = exp(−(−ln p)�) Wu and Gonzalez (1996): � = 0.74 (gains)

2. The Trade-OffMethod
The elicitation procedure consisted of two parts. In the
first part, we elicited the utility function for life du-
ration. The elicited utilities were then used as inputs
in the second part to elicit the probability weights.
We used the trade-off method for the elicitation of
utilities and probability weights (Wakker and Den-
effe 1996). This method was selected because it is not
affected by probability weighting. Alternative tech-
niques such as the probability equivalence method, the
certainty equivalence method, and the lottery equiva-
lence method (McCord and de Neufville 1986) suffer
from the defect that they are vulnerable to probabil-
ity weighting and do not provide valid utilities under
rank-dependent expected utility.

Part 1: Elicitation of the Utility Function
The trade-off method determines a standard sequence
of outcomes, which are equally spaced in terms of util-
ity. The first step consists of the selection of two refer-
ence outcomes R and r with R� r and a starting out-
come x0. Then an individual is asked to specify x1 such
that he is indifferent between the lotteries [p,R; 1−p, x0]
and [p, r; 1−p, x1], with R� x0 and r� x1 to ensure that
the two lotteries are comonotonic. After x1 has been
elicited, the individual is asked to specify the number
x2 such that he is indifferent between [p, R; 1 − p, x1]
and [p, r; 1 − p, x2]. If r� x2 and rank-dependent ex-
pected utility theory holds, then the first indifference

yields

[p, R; 1− p, x0] ∼ [p, r; 1− p, x1]
⇔ w(p)U(R) + [1− w(p)]U(x0)
= w(p)U(r) + [1− w(p)]U(x1)
⇔ w(p)[U(R)−U(r)]
= [1− w(p)][U(x1)−U(x0)], (6a)

and, similarly, the second indifference yields

[p, R; 1− p, x1] ∼ [p, r; 1− p, x2]
⇔ w(p)[U(R)−U(r)] = [1− w(p)][U(x2)−U(x1)]:

(6b)

Combining (6a) and (6b) gives

U(x2)−U(x1) =U(x1)−U(x0): (7)

As long as r� xj, we can proceed to ask for indiffer-
ence between [p, R; 1 − p, xj−1] and [p, r; 1 − p, xj], in
the process eliciting a standard sequence (x0, : : : , xk) for
whichU(xi)−U(xi−1)=U(xj)−U(xj−1) for all 1≤ i; j≤ k.
Given the uniqueness properties of the utility function
U, the scale and the origin of the function can be chosen
arbitrarily. We used the scalingU(x0)=0 andU(xk) =1,
from which it follows that for all 1≤ j≤ k : U(xj) =j=k.

Part 2: Elicitation of the Probability Weighting
Function
The probability p was held constant throughout the
elicitation of the standard sequence. This ensured that
the elicited utilities were not distorted by probability
weighting. Equations (6a) and (6b) show that the terms
w(p) and 1 − w(p) cancel out if p is held constant. To
elicit the probability weighting function, the probabil-
ities have to be varied. Probability weights were de-
termined by two types of questions. For low proba-
bilities, we asked for an outcome zr such that the in-
dividual is indifferent between [p′, xi; 1 − p′, xj] and
[p′, xk; 1−p′, zr] with xk ≥ xi≥ xj, and xi; xj, and xk ele-
ments of the standard sequence elicited in the first part.
For higher probabilities, we asked for an outcome zs
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such that indifference holds between [p′, xm; 1− p′, xn]
and [p′, zs; 1− p′, xq] with xm≥ xn≥ xq and xm, xn, and
xq elements of the standard sequence. We explain be-
low why we used different questions for low and high
probabilities.
By rank-dependent expected utility, the weight of

probability p′ is determined from the first indifference
as

w(p′) =
u(xj)− u(zr)

[u(xj)− u(zr)] + [u(xk)− u(xi)] (8)

and from the second indifference as

w(p′) =
u(xn)− u(xq)

[u(zs)− u(xm)] + [u(xn)− u(xq)] : (9)

As mentioned in the introduction, Abdellaoui (2000)
also used the trade-off method to elicit first the utility
function and then the probability weighting function
with the elicited utilities as inputs. His procedure con-
sists of the selection of an element xj from the elicited
standard sequence and to determine the probability p′

that makes the individual indifferent between the lot-
teries [p′, xk; 1− p′, x0] and [1, xj], where [1, xj] stands
for xj with certainty. Under rank-dependent expected
utility theory and the chosen scaling, this indifference
determines the weight of probability p′ as

w(p′) =
j
k
: (10)

If p′ is determined by a probability matching ques-
tion, then the response scale differs between the two
parts of the elicitation procedure: In the first part the
outcome dimension is used to elicit indifference, in
the second part the probability dimension. Previous
studies have shown that different response scales
prime different aspects of the decision problem, a
phenomenon referred to as scale compatibility (Tversky
et al. 1988). Scale compatibility has been observed both
in matching and in sequential choice tasks (DelquiKe
1993, 1997). Abdellaoui (2000) makes a careful attempt
to avoid the distorting impact of scale compatibility
by eliciting indifference through nonsequential choice
questions. No experimental evidence exists about the
impact of scale compatibility in nonsequential choice
tasks.

To avoid the distorting impact of changing response
scales, we used only the outcome dimension to elicit
indifferences. Our procedure has three potential dis-
advantages. First, the outcomes zr and zs in Equations
(8) and (9) need not belong to the standard sequence,
in which case their utility has to be estimated from the
utility of elements of the standard sequence. This ap-
proximation may introduce bias. However, the utility
function does not deviate strongly from linearity over
small intervals (Wakker and Deneffe 1996), and a lin-
ear approximation will be reasonable as long as the
standard sequence is sufficiently fine.
Second, our procedure imposes bounds on the

elicited probability weights. Because zr can never
be less than zero, Equation (8) forces the probabil-
ity weights to lie between zero and u(xj)=([u(xj)] +
[u(xk)− u(xi)]). Hence, the elicited probability weights
are bounded above and, therefore, we only used
Equation (8) to elicit the weights of lower probabil-
ities. The utility of zs in Equation (9) only be deter-
mined if zs is smaller than xk, the final element in the
standard sequence. Therefore application of Equa-
tion (9) leads to probability weights that lie between
(u(xn) − u(xq))=([1 − u(xm)] + [u(xn) − u(xq)]) and one.
That is, the elicited probability weights are bounded
below, and we therefore only used Equation (9) to
elicit the weights of higher probabilities. The ’’bound-
edness problem’’ can be limited by an appropriate
choice of the elements of the standard sequence. If xj
in Equation (8) is relatively far from x0 in the standard
sequence and xk and xi are relatively close, then the
elicited probability weight can take on values close to
one. Similarly, if in Equation (9) xn is relatively close
to xq and xm is relatively far from xk, then the elicited
probability weight can take on values close to zero.
In §3 we explain how we have handled the ’’bound-
edness problem’’ in our experimental design, and in
§4 we present evidence that it caused no problems in
our data.
Third, our method may suffer from error propa-

gation. Equations (8) and (9) determine probability
weights by a ratio. Error propagation for ratios can be
problematic if the denominator is close to zero, so that
small errors in the numerator induce large errors in
the quotient. Such problems do not occur in Equations
(8) and (9) because the denominator is remote from
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zero, more than the numerator. Additionally, the nu-
merator and the denominator are positively correlated
because of the common term, which again reduces the
overall error in the quotient. These analytical observa-
tions suggest that error propagation will not be dra-
matic in our design. To obtain insight into the extent
to which our procedure is affected by error propa-
gation, we performed two simulation studies based
on two different error theories. These studies are de-
scribed in §4. Their results indicate that error propa-
gation is not a problem in our study.

3. Experiment
3.1. Subjects
Prior to the main experiment, the questionnaire was
tested in several pilot sessions, using university staff as
subjects. Fifty-one subjects participated in the main ex-
periment. All subjects were undergraduate economics
students from the University of Pompeu Fabra. The
subjects were paid 5,000 Pesetas (approximately 30
U.S. dollars) for their participation. Because we used
life duration as the outcome domain, individual re-
sponses to the experimental questions could not be
played out for real. That is, there were no real incen-
tives in our study. Several studies have argued and
presented empirical evidence that hypothetical and
real questions give similar results in decision under
risk (Tversky and Kahneman 1992, Beattie and Loomes
1997). In a recent review of the literature on the ef-
fect of financial incentives in experiments, Camerer
and Hogarth (1999) conclude that incentives appear to
help most frequently in judgment and decision tasks
that are different from the task we used. The trade-
off method assesses preferences between lotteries, and
for such a task real incentives do not seem to improve
performance.

3.2. Procedures
The experiment was carried out in two personal in-
terview sessions separated by two weeks. Personal
interview sessions were used in an attempt to obtain
high-quality data.
Both sessions started with an explanation of the

trade-off method, both orally and in writing. Subjects

were told that they suffered from one of two diseases,
but that it was right now unknown from which dis-
ease they suffered. The diseases were anonymously
labeled A and B to avoid possible framing effects.
Subjects were further informed that it is known from
previous medical experience that people with the
symptoms they displayed have Disease A half of the
time and Disease B half of the time. There exist two
treatments to beat the symptoms, but the effectiveness
of the treatments depends on the disease. The out-
comes of the treatments were numbers of remaining
life duration. Subjects were told that the remaining
life duration was spent in good health. Subjects had to
choose a treatment before it was known which disease
they actually had.
Following the explanation of the decision problem,

the subjects were given a practice question and asked
to explain their answer. Their explanation indicated
whether they understood the questions and the exper-
imental task. After we were convinced that a subject
understood the questions, we moved on to the actual
experiment.
The first experimental session started with the de-

termination of the standard sequence for utility. The
reference outcomes R and r were set at 55 years and
45 years, respectively. We had learned from the pi-
lot sessions that these reference values created a stan-
dard sequence in which the elements were fairly close
together (1 to 5 years). Outcome x0 was set equal to
zero, that is, x0 corresponded to immediate death. A
standard sequence x1, : : : , x6 was elicited by deter-
mining the number of years xj, j=1, : : : , 6 for which
subjects were indifferent between [ 12 , 55;

1
2 , xj−1] and

[ 12 , 45;
1
2 , xj]. The elicited standard sequence traces the

utility function for life duration. The utility function
was scaled such that U(xj) =j=6.
The pilot sessions had shown that people find the

trade-off method easier to answer if they first deter-
mine the life durations for which one of the two treat-
ments is clearly superior and then move towards the
indifference value. We therefore asked subjects first to
compare the treatments [ 12 , 55;

1
2 , xj−1] and [

1
2 , 45;

1
2 , xj]

for xj=xj−1 and for xj=45. All subjects agreed that
the treatment [ 12 , 55;

1
2 , xj−1] is better than the treat-

ment [ 12 , 45;
1
2 , xj−1], and all but one subject agreed

that the treatment [1, 45] is better than the treatment
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[ 12 , 55;
1
2 , xj−1].

1 Subjects were then told that these
preferences imply that there should be a value of xj
between xj−1 and 45 for which their preferences be-
tween the treatments switch. They were asked to de-
termine this ’’switching value’’ by gradually increas-
ing xj starting from xj−1 and by gradually decreasing xj
from 45 years until they arrived at a range of values for
which they found it hard to choose between the treat-
ments. From this range of values, subjects were then
asked to pick the value of xj for which they considered
the treatments most finely balanced. This procedure is
similar to that of Dubourg et al. (1994).
Over the two sessions, five questions were asked to

elicit the shape of the probability weighting function.
Weights were established for the following five proba-
bilities: 0.10, 0.25, 0.50, 0.75, and 0.90. These probabili-
ties were selected to include both probabilities that are
typically overweighted (0.10 and 0.25) and probabili-
ties that are typically underweighted (0.50, 0.75, and
0.90) according to previous research.
The weights for probabilities 0.10, 0.25, and 0.50

were elicited by asking for the indifference value zj in
the comparison between [p, x4; 1 − p, x3] and [p, x5;
1− p, zj] and by applying Equation (8). This question
leads to an upper bound of the probability weight of
0.75. This upper bound is reached if zj=0. We denote
the responses to the questions for p=0:10, 0:25, and
0.50 by z1, z2, and z3, respectively.
The weights for probabilities 0.75 and 0.90 were

elicited by asking for the indifference value zj in the
comparison between [p, x3; 1−p, x2] and [p, zj; 1−p, x1]
and by applying Equation (9). This question leads
to a lower bound of the probability weight of 0.25.
This lower bound is reached if zj=x6. We denote the
responses to the questions for p=0:75 and 0.90 by z4
and z5, respectively.
The procedure used to elicit z1 through z5 was simi-

lar to the procedure used in the elicitation of the utility
function. Subjects were encouraged to determine first
the values of zj, j=1, : : : , 5, for which they clearly pre-
ferred one of the treatments, and finally the value of

1 This subject preferred [ 12 , 55;
1
2 , x4] to [1; 45]. His preferences

violate comonotonicity of the lotteries, and he was excluded
from the analyses for this reason.

zj for which they considered the two treatments most
finely balanced. The utilities of z1 through z5 were de-
termined both under the assumption that utility is lin-
ear between points of the standard sequence, the linear
approximation, and under the assumption that utility
is a power function, U(x) =�x�. A power function was
selected because this function is frequently used in the
literature (e.g., Tversky and Kahneman 1992) and there
exists empirical support for a power function for life
duration (Pliskin et al. 1980, Stiggelbout et al. 1994).
The power function was estimated using the elements
of the standard sequence and their corresponding util-
ities as data inputs.
In the first experimental session we asked for z1, z3,

and z4. The order of the questions was varied to avoid
order effects. The second session served to elicit z2 and
z5 and to repeat three questions from the first session to
test the consistency of subjects’ answers. The questions
that were repeated varied across subjects. Procedures
and methods in the second session were identical to
those in the first session.

4. Results
4.1. Reliability and Consistency
Two subjects were excluded from the analyses: one
was unable to make any trade-offs; the other subject’s
responses violated comonotonicity---both x5 and x6
exceeded r for this subject (see also Footnote 1).
The second session responses slightly exceeded

the first session responses. The mean difference be-
tween first and second session responses was −0:327
(SE=0:184). The difference between first and second
session responses did not reach conventional levels of
significance by a paired t test. (t109 =−1:778, p =0:078).

4.2. Utility Curvature

Aggregate Data. Figure 1 displays the elicited
utility function for life duration. The difference be-
tween successive points of the standard sequence
(the step size), increases, leading to a concave
utility function. The step size increases gradu-
ally and, hence, the linear utility function for life
duration is a good approximation over short intervals.
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Figure 1 The Elicited Utility Function for Life Duration

Individual Data. By Ljj−1 we denote the difference
(xj−xj−1)− (xj−1−xj−2), that is, the difference between
two successive step sizes of the standard sequence.
Positive Ljj−1 corresponds to a concave utility function,

zero Ljj−1 to a linear utility function, and negative L
j
j−1

to a convex utility function. For each subject, we ob-
serve five values of Ljj−1. There are 29 (9) subjects with

at least 3 (4) positive values of Ljj−1, 13 (5) subjects

with at least 3 (4) zero values of Ljj−1, and 1 (0) subject

with at least 3 (4) negative values of Ljj−1. Clearly, the
modal shape of the utility function is concave.

4.3. Probability Weighting

Boundedness Problem and Violations of Stochas-
tic Dominance. No subject reported either a value of
zero in the questions involving z1, z2, and z3, or a value
of x6 in the questions involving z4 and z5. We con-
clude that the boundedness of the probability weights
caused no problems in our data.
Some responses were such that the outcomes of one

treatment were better under both states of the world
and, hence, this treatment stochastically dominated the
other treatment. Because it is not plausible that an in-
dividual is indifferent between two treatments where
one treatment stochastically dominates the other, these
responses were interpreted as reflecting confusion and
were excluded from the analyses.

Figure 2 The Elicited Probability Weighting Function

Note. The median probability weights are 0.253, 0.357, 0.526, 0.668, and 0.707
under the linear approximation and 0.224, 0.320, 0.462, 0.630, and 0.677 under
the power approximation.

Estimation of the Power Utility Function. A power
function was estimated for each subject based on the
criterion ’’minimize the sum of squared residuals’’.
This function was used in the power approxima-
tion. The mean of the individual optimal estimates
of the power coefficient � is 0.779 (median =0:769;
SE=0:0177), which is close to 0.74, the estimate ob-
tained by Stiggelbout et al. (1994) in a group of cancer
patients. The estimated utility functions fit the data
very well: The overall proportion of the total variation
explained by the power function (R2) is equal to 0.987.

4.3.1. Aggregate Data. Figure 2 displays the mean
probability weights under the linear and the power ap-
proximation. The pattern of probability weights is con-
sistent with an inverse S-shaped probability weighting
function: Small probabilities are overweighted and in-
termediate and large probabilities are underweighted.
The only deviation from the inverse S-shape is that the
slope of the weighting function between 0.50 and 0.75
exceeds the slope between 0.75 and 0.90. The degree of
upper subadditivity exceeds the degree of lower sub-
additivity. Compared to both the parametric and the
nonparametric studies using monetary outcomes, we
find more lower subadditivity and similar upper sub-
additivity. The exception is the nonparametric study
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by Gonzalez and Wu (1999), who find lower and up-
per subadditivity similar to ours.
The probability weights under the power approxi-

mation are smaller than the weights under the linear
approximation. This happens because most subjects
have a concave utility function for life duration. If util-
ity is concave, then the linear approximation will un-
derestimate the utility of zr and zs. It can be verified
from Equations (8) and (9) that the probability weight
is negatively related to the utility of zr, respectively zs.
Hence, if utility is concave the linear approximation
tends to overestimate the probability weight.
The note under Figure 2 shows the median data. The

use of median instead of mean data does not affect the
conclusions.

4.3.2. Individual Data. Let 9 jj−1 denote the average
slope of the probability weighting function between
probabilities j and j − 1:

9 jj−1 =
w(pj)− w(pj−1)
pj − pj−1 :

Let ∇ j
j−1 denote the change in the average slope be-

tween successive probabilities, i.e., the difference be-
tween 9 jj−1 and 9

j−1
j−2 . The ∇ j

j−1 can be used to examine
the shape of the probability weighting function. For ex-
ample, concavity of the probability weighting function
corresponds to a decreasing slope and, hence, to neg-
ative ∇ j

j−1. Similarly, linearity corresponds to zero ∇ j
j−1

and convexity to positive ∇ j
j−1. An inverse S-shaped

probability weighting function is concave for small j,
and convex for larger j.
For each subject, we observed five values of ∇ j

j−1. A
subject’s probability weighting function was classified
as lower subadditive if ∇0:250:1 was negative. The proba-
bility weighting function was upper subadditive if∇10:9
was positive. The probability weighting function was
concave if at least three ∇ j

j−1 were negative and the
subject did not exhibit upper subadditivity, linear if at
least three ∇ j

j−1 were zero and the subject did not dis-
play both upper and lower subadditivity, and convex
if at least three ∇ j

j−1 were positive and the subject did
not exhibit lower subadditivity.
Table 2 shows the classification of individuals ac-

cording to the shape of their probability weighting

Table 2 Classification of Subjects According to the Slope of Their
Probability Weighting Function

Proportion of Proportion of
Subjects (Linear Subjects (Power

Shape Approximation) Approximation)

Concave 10.9% 6.5%
Linear 0% 0%
Convex 4.4% 8.7%
Lower Subadditivity 95.7% 91.3%
Upper Subadditivity 86.9% 89.1%
Lower and Upper Subadditivity 83.7% 81.4%

Table 3 Classification of Subjects Based on w(0.10) and 1 − w(0.90)

Proportion of Proportion of
Subjects (Linear Subjects (Power

Shape Approximation) Approximation)

Lower Subadditivity 95.8% 91.7%
Upper Subadditivity 91.3% 95.7%
Lower and Upper Subadditivity 88.9% 88.9%
PE Exceeds CE 47.5% 25.0%
PE Equal to CE 10.0% 0%
CE Exceeds PE 42.5% 75.0%

Note. PE stands for ’’probability effect’’ and CE for ’’certainty effect.’’

function. The table shows strong evidence for lower
and upper subadditivity. A small minority of subjects
has a concave or convex weighting function and no
subject has a linear weighting function.
An alternative way to examine lower subadditivity

and upper subadditivity at the individual subject level
is to look at w(0:10) and 1−w(0:90). A subject satisfies
lower subadditivity if w(0:10)¿0:10, and upper subad-
ditivity if 1− w(0:90)¿0:10. This test is comparable to
the metric used by Tversky and Fox (1995). This metric
also permits a test of the relative sizes of the possibility
effect and the certainty effect by comparing w(0:10) to
1−w(0:90). The possibility effect exceeds the certainty
effect if w(0:10)¿1− w(0:90).
Table 3 displays the analysis based on the above

metric. The table confirms both lower and up-
per subadditivity. Among the subjects who sat-
isfy both lower and upper subadditivity, there are
slightly more subjects for whom the possibility effect
exceeds the certainty effect than subjects for whom
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the certainty effect exceeds the possibility effect
under the linear approximation. Under the power ap-
proximation this conclusion is reversed. This reversal
in conclusion occurs because for many subjects the
possibility effect and the certainty effect are approxi-
mately equal.

Linearity of w for Intermediate Probabilities.
There exists some controversy in the literature about
the question of whether the probability weighting
function is nonlinear throughout the unit interval [0,1]
or whether nonlinearities occur only at the boundaries
of the unit interval (Camerer 1992, Wu and Gonza-
lez 1996). In the latter case, the probability weighting
function is linear, and hence consistent with expected
utility theory, for intermediate probabilities. Wu and
Gonzalez (1996) found support for nonlinearity, with
weights becoming less concave throughout the unit
interval, whereas Camerer’s (1992) results support
linearity away from the boundaries. Abdellaoui (2000)
obtains mixed results.
We tested for linearity of the probability weighting

function by examining the 9 jj−1 for j =0:25, 0:50, 0:75,
0:90. If the probability weighting function is linear in
the interior of the unit interval, then the 9 jj−1 should
be approximately equal. The nonparametric Friedman
test for repeated measurements was used to test for
equality of the 9 jj−1. Neither under the linear nor un-
der the power approximation could the null hypoth-
esis of equality of the 9 jj−1 be rejected (
2(3)=6:270,
p=0:099 and 
2(3)=2:655, p=0:448 for the linear and
power approximation, respectively). This suggests lin-
earity of the probability weighting function and thus,
no systematic deviations from expected utility for in-
termediate probabilities.

Parametric Weighting Functions. We estimated
for each subject the optimal values of the parameters
in Equations (2)--(5). The estimation criterion was
the minimization of the sum of the squared residuals
(SSR),

∑5
i=1(wi − ŵi)2, where wi is the elicited proba-

bility weight and ŵi the estimated probability weight
under the parametric specification. To be efficient,
this estimation criterion requires the error terms to be
normally and independently distributed.

Table 4 Mean Estimation Results for the Parametric Specifications of
the Probability Weighting Function

Functional Form Linear Power
Approximation Approximation

w(p) = p�

[p�+(1−p)�]
1
�

�= 0.713 (0.025) �= 0.674 (0.027)

w(p) = �p�
�p�+(1−p)� �= 0.573 (0.041) �= 0.550 (0.036)

�= 1.127 (0.093) �= 0.816 (0.035)

w(p) = exp(−(−ln p)�) �= 0.589 (0.037) �= 0.533 (0.031)

w(p) = exp(−�(−ln p)�) �= 0.604 (0.053) �= 0.534 (0.038)
�= 0.938 (0.038) �= 1.083 (0.036)

Note. Standard errors appear in parentheses.

Table 4 shows the means of the individual optimal
values. For the one-parameter specification Equation
(2), our estimates are comparable to those obtained for
monetary outcomes. For the two-parameter specifica-
tion, we find relatively more elevation, in particular
under the linear approximation. An explanation for
this finding may be that subjects consider all durations
in the experiment as losses, because they fall below
subjects’ life expectancy. It is well-known that people
find the chance domain more attractive for losses than
for gains (Tversky and Kahneman 1992, Fennema and
Wakker 1997). Compared to Tversky and Fox (1995),
Wu and Gonzalez (1996), and Abdellaoui (2000), we
find more curvature. An explanation for this finding
may be that health is a more ’’affect-rich’’ outcome
than money. Rottenstreich and Hsee (1999) find more
curvature of the probability weighting function for
affect-rich outcomes. However, compared to Gonzalez
and Wu (1999), we find less curvature.
Goodness of fit of the various specifications was

assessed by taking the mean of the individual sums
of squared residuals adjusted for degrees of freedom.
Based on this criterion, the two-parameter specifica-
tions Equations (3) and (5) fit the data better than their
one-parameter counterparts Equations (2) and (4). 2

2 Equation (3) leads to reductions in the mean of the individual
sums of squared residuals adjusted for degrees of freedom of
34.0% and 24.2% under the linear and the power approximation,
respectively, compared to Equation (2). Equation (5) leads to
reductions of 26.5% and 11.1% under the linear and the power
approximation, respectively, compared to Equation (4).
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This better fit of the two-parameter specifications holds
in spite of the fact that on the aggregate level both �
and � are relatively close to one and are not signifi-
cantly different from one under the linear approxima-
tion. Apparently, the two-parameter specification fits
the data better than the one-parameter specification
at the individual subject level, but only slightly better
at the aggregate level. This finding is consistent with
Gonzalez and Wu (1999).

4.3.3. Propagation of Error. To obtain more insight
into the effect of error propagation, we performed two
simulation studies based on two different error theo-
ries. In the first simulation, we assumed that in evalu-
ating the trade-off questions, the subject makes an er-
ror in his assessment of utility differences. This error
theory is comparable to Hey and Orme (1994). We as-
sumed that the response error � is a proportion of the
true utility difference, i.e., the assessed utility differ-
ence is equal to (1 + �) times the true utility difference.
In the second simulation, we assumed that while the

subject correctly assesses utility differences, he makes
an error in reporting his response. This is, by acci-
dent the subject sometimes reports the wrong indiffer-
ence value. This error model is comparable to Harless
and Camerer’s ’’trembling hand’’ theory (Harless and
Camerer 1994). We assumed that the response error �
is a proportion of the true indifference life duration.
That is, the reported indifference life duration is equal
to (1 + �) times the true indifference life duration.
The error terms were in both simulations assumed

to be normally distributed, with mean 0.00 and stan-
dard deviation 0.05. The selected value of the stan-
dard deviation is not important. The aim of the simula-
tion exercise is to show that error propagation is not a
problem in our data, that is, that small response errors
do not translate into large errors in the elicited prob-
ability weights. For both error models, we performed
1,000 simulations. Under both error theories, there is
no indication that error propagation is a problem for
our elicitation procedure. To illustrate, Table 5 shows
the standard deviations of the errors in the aggregate
probability weights and, in parentheses, the standard
deviations of the errors as a proportion of the proba-
bility weights under the linear approximation. In each

Table 5 Results of the Simulation Studies in Which There Is an Error
in the Assessed Utility Difference (Model I) or in the Reported
Indifference Life Duration (Model II)

Probability Standard Deviation Error Standard Deviation Error
Model I Model II

0.10 0.0019 (0.8%) 0.0117 (4.8%)
0.25 0.0023 (0.6%) 0.0092 (2.6%)
0.50 0.0024 (0.5%) 0.0057 (1.1%)
0.75 0.0022 (0.3%) 0.0098 (1.5%)
0.90 0.0019 (0.3%) 0.0128 (1.8%)

Notes. Standard deviations of the errors as a proportion of the probability weights
are in parentheses. The table shows the error in the aggregate probability
weights under the linear approximation.

case, the standard deviation is less than 0:05, the se-
lected size of the response error.

5. Conclusion
The main conclusion of this article is that probabil-
ity weighting is robust. We find significant evidence
of probability weighting both at the aggregate level
and at the individual subject level. The predominant
shape of the probability weighting function is inverse
S-shaped with the point of inflection lying between
0:25 and 0:50. Probability weighting is particularly
strong at the boundaries of the unit interval. Hence,
we observe strong support for lower subadditivity
and upper subadditivity (Tversky and Wakker 1995).
These findings are consistent with studies using mon-
etary outcomes. Compared to these studies, we find
more elevation of the probability weighting function.
Wakker and Stiggelbout (1995) have shown how

probability weighting can lead to biases in health
utility measurement. We have shown that probability
weighting affects medical decisions. We urge medical
decision analysts to incorporate probability weighting
in their analyses. The method outlined in this article
can be used to elicit the probability weighting func-
tion for individual patients. For societal evaluations
where elicitation of the probability weighting func-
tion is often not feasible, the parametric specifications
Equations (2)--(5) with the parameters elicited in this
study can be used.
The robustness of the empirical findings on prob-

ability weighting indicates its importance. Ignoring

MANAGEMENT SCIENCE/Vol. 46, No. 11, November 2000 1495



BLEICHRODT AND PINTO
A Parameter-Free Elicitation of the Probability Weighting Function

probability weighting in modeling decision under risk
and in utility measurement is likely to lead to descrip-
tively invalid theories and distorted elicitations.3

3 We are grateful to Peter Wakker, an associate editor, and two
referees for their helpful comments on previous drafts. Han
Bleichrodt’s research was made possible by a fellowship of the
Royal Netherlands Academy of Arts and Sciences.
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