
Journal of Mathematical Psychology 43, 238�260 (1999)

Probability Weighting and Utility Curvature
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Quality-Adjusted Life-Years (QALYs) are currently the most important
utility model in medical decision making. QALYs are calculated by adjusting
years of life for the utility of the health state in which these years are spent.
For normative reasons the standard gamble is the preferred method to
measure health state utilities, but concern exists about its descriptive proper-
ties. Recent theoretical work has suggested that probability weighting can
explain anomalies in standard gamble measurement. This paper shows that
applying probability weighting in standard gamble measurement increases
the consistency of QALYs with individual preferences. The consistency of
QALYs with individual preferences is not significantly increased further if
utility curvature is also taken into account. � 1999 Academic Press
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1. INTRODUCTION

Quality-Adjusted Life-Years (QALYs) are currently the most important outcome
measure in health economics and medical decision making. They are important
both as a utility-based outcome measure in social decisions about the allocation of
health care resources and as a utility model in individual decisions about the
selection of the appropriate medical treatment. QALYs offer the advantages of trac-
tability and intuitive appeal, but an important disadvantage is that they are only
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under restrictive conditions representative of individual utilities. Characterizations
of QALYs have been given for expected utility theory by Pliskin, Shepard, 6

Weinstein (1980), Bleichrodt (1995), and Bleichrodt, Wakker, 6 Johannesson
(1997), and for a more general rank dependent utility model by Bleichrodt and
Quiggin (1997).

The number of QALYs of a health profile (a sequence of health outcomes) is
calculated by adjusting each year of life by a quality weight that reflects the attrac-
tiveness of the health state in which that year is spent. Formally, if (q1 , ..., qT)
denotes a health profile, where qt stands for health status in year t, and T is the
duration of the profile, then the number of QALYs is equal to

:
T

t=1

V(qt), (1)

where V(qt) is the quality weight, or utility, of health state qt . There exist three
principal methods to elicit health state utilities: the rating scale, the time trade-off,
and the standard gamble (for a detailed description see Torrance, 1986). The
difference between the standard gamble and the other two methods is that the latter
do not explicitly involve risk. Risk is a central aspect in most medical decision
contexts and it is for this reason that the standard gamble has been advanced as
the preferred method of health utility measurement.

In the standard gamble, the analyst asks a subject to compare a risky treatment
(t years in health state x, p; t years in health state z), that is, a treatment giving the
outcome t years in health state x with probability p and t years in health state z
with probability 1& p, with a certain outcome t years in health state y.1 The subject
is then asked to specify the probability p$ for which he is indifferent between the
risky treatment and the certain outcome. If we evaluate this indifference by expected
utility theory then we obtain

U(t years in health state y)=p$U(t years in health state x)

+(1& p$) U(t years in health state z). (2)

It follows from Eq. (2) after application of the QALY model (Eq. (1)) and the
scaling U(1 year in health state x)=1 and U(1 year in health state z)=0 that
V(health state y)= p$.

If a person behaves perfectly well in agreement with expected utility theory then
the standard gamble will elicit true utilities. Medical decision making is essentially
a prescriptive analysis and expected utility theory is widely seen as the dominant
prescriptive model of choice under risk (e.g., Edwards, 1992). However, the elicita-
tion of health state utilities for prescriptive analyses requires subjective judgments
and therefore any prescriptive analysis has to take into account descriptive failures
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in health utility measurement and we therefore simply refer to it as the standard gamble method.



of the theory that underlies it. It is now widely acknowledged that expected utility
theory fails as a descriptive theory of choice under risk. No direct evidence of
descriptive violations of the axioms of expected utility theory exists in the medical
decision making literature, but several studies report indirect evidence (e.g., Llewellyn-
Thomas et al., 1982; Stiggelbout et al., 1994). The displayed violations of expected
utility theory and anomalies of the standard gamble method have created a
deadlock in health utility measurement: on the one hand one would like to stick to
the standard gamble because of its normative status, on the other hand the negative
empirical evidence has undermined the faith in the validity of the utilities elicited by
the standard gamble. This deadlock has led some practitioners in health utility
measurement to advocate the use of the time trade-off (Richardson, 1994) and the
rating scale (Broome, 1993) instead, even though these methods do not explicitly
involve risk and therefore lack validity in decision under risk. From a practical
point of view there is clearly a need for procedures to improve the descriptive
validity of standard gamble measurement of health state utilities.

In theoretical research on decision under risk, several nonexpected utility theories
have been developed in response to the displayed violations of expected utility
theory. Among these nonexpected utility theories, the rank dependent utility model
(Quiggin, 1982; Yaari, 1987; Schmeidler, 1989) and its derivative cumulative
prospect theory are currently the most popular descriptive alternatives for expected
utility theory. A distinctive feature of these theories in comparison with expected
utility theory is that they allow for nonlinear weighting of probabilities, which
empirical evidence has identified as a major cause of violations of expected utility
theory.

Contrary to expected utility, in rank dependent utility theory the decision weight
of an outcome is not just the probability associated with the outcome, but it is a
function of both the probability and the rank of the outcome as compared to the
other outcomes. Weber (1994) has argued that rank dependent weighting is applied
both as a result of perceptual biases and for motivational reasons. Perceptual biases
occur because persons misconceive probabilities. The motivational reasons for rank
dependent weighting can either be individual-specific, individuals differ in the
relative emphasis they put on outcomes at the low end versus outcomes at the high
end (see also Lopes, 1984), or situation-specific. Situation-specific reasons for rank
dependent utility arise because the consequences of over- versus underestimation of
risky outcomes may be quite different.2 Weber and Kirsner (1997) showed that all
three reasons for rank dependent utility affect preferences over risky (monetary)
outcomes. This is an important finding: if rank dependent weighting would only
occur because of perceptual biases then rank dependent utilities would misrepresent
true utilities and would be irrelevant in prescriptive analyses. However, if rank
dependent weighting is a response to internal and external constraints then it need
not be a misrepresentation of true utility and it may have important prescriptive
implications.
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minimizing an asymmetric loss function for over- versus underestimates of the value of risky outcomes.



The aim of this paper is to examine whether rank dependent weighting can
improve the descriptive validity of the standard gamble in QALY-based decision
making. We examine whether the theoretical insights that have been developed in
the field of choice under risk can be used to address an important practical problem
in health utility measurement: how the descriptive validity of the standard gamble
can be improved without sacrificing its normative status. The work by Weber
(1994) and Weber 6 Kirsner (1997) quoted above suggests that rank dependent
weighting is also a consequence of motivational factors that are important for
prescriptive research. Hence, rank-dependent weighting may indeed be a fruitful
way to improve the descriptive validity of standard gamble measurement without
sacrificing its normative status.

We compare the descriptive validity of the standard gamble with and without
rank-dependent weighting by assessing the degree of association with individual
choices. We took individual choices to be the norm, because choices are the basic
primitive in decision theory. Any theory of decision under risk takes an individual
preference relation as primitive and then proceeds by imposing axioms on this
preference relation.

Throughout most of the paper we examine the descriptive validity of standard
gambles with and without rank dependent weighting in the context of the QALY
model (Eq. (1)). Our motivation to stick to the QALY model is that this model is
by far the most important in medical decision making. This paper was motivated
by the need to try and develop procedures that help practitioners in health utility
measurement to improve the validity of their measurements. Given this aim, it is
important to stay as close as possible to the procedures that are commonly applied
in health utility measurement. As a consequence, our study provides insight in
whether QALYs with rank dependent weighting are more consistent with individual
preferences than QALYs without rank dependent weighting. It should be
emphasized that our study is not a direct test between rank dependent utility theory
and expected utility theory in the medical context. As we observed above, QALYs
are only under restrictive assumptions equal to utilities and violation of these
assumptions confounds a direct test of rank dependent utility theory versus expec-
ted utility theory. We provide some insight in the impact of the confounding by also
examining more general QALY type models.

We generalize the QALY model of Eq. (1) by allowing the utility function for
life-years to be nonlinear. For chronic health profiles, that is, profiles in which
health status is constant, we replace the QALY model by the multiplicative
representation

U(q1 , ..., qT)=W(t)* V(q). (3)

This representation follows both in the expected utility model and in the rank
dependent utility model from utility independence, either of quality of life from
quantity of life, or of quantity of life from quality of life, and a, in the medical con-
text entirely plausible, zero-condition which says that for a time duration of zero
life-years all health states are equivalent (Miyamoto et al., 1998). Empirical
analyses have provided support both for utility independence of quantity of life
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from quality of life (Miyamoto 6 Eraker, 1988) and for utility independence of
quality of life from quantity of life (Bleichrodt 6 Johannesson, 1997).

For nonchronic health profiles, profiles in which health status can vary, we
replace Eq. (1) by the utility representation

U(q1 , ..., qT)=W(1)* V(1)+ } } } +W(T )* V(T). (4)

This representation can be characterized by additive independence (Fishburn, 1965)
if expected utility theory holds or by generalized marginality (Miyamoto, 1988;
Bleichrodt 6 Quiggin, 1997) if expected utility theory is replaced by a more general
rank dependent utility model. Empirical evidence is scarce but negative on additive
independence (Maas 6 Wakker, 1994) and nonexistent on generalized marginality.

In what follows, we briefly describe in Section 2 the difference between expected
utility theory and rank dependent utility theory and we show how utilities for
health states can be calculated under rank dependent utility theory. In Section 3 we
describe the experiment that aimed to test the principal question of this paper:
whether rank dependent weighting improves the consistency of QALYs with
individual preferences. The results described in Section 4 indicate that this question
can be answered in the affirmative: rank dependent weighting indeed leads to a
significant improvement in the consistency of QALYs with individual preferences.
In Section 5 we move on to the study of the effect of using more general QALY
models than Eq. (1) in which curvature of the utility function for life-years is
allowed. Section 6 discusses the main implications of our study and concludes.

2. THEORY

We confine ourselves to the context of decision under risk, that is, probabilities
are objectively given. Denote a lottery giving outcome xi with probability pi by
( p1 , x1 ; ...; pm , xm), where m can be any positive integer. The expected utility of this
lottery is equal to

EU( p1 , x1 ; ...; pm , xm)= :
m

i=1

pi U(x i), (5)

where U is a utility function over outcomes that is not restricted to have any par-
ticular shape. Equation (1) shows that in expected utility theory outcomes are
transformed into utilities, but probabilities are not transformed and enter linearly
in the evaluation formula.

To calculate the rank dependent utility of the lottery ( p1 , x1 ; ...; pm , xm) the out-
comes must be rank ordered. Let x1 - } } } -xm , where - denotes ``at least as
preferred as.'' The rank dependent utility of ( p1 , x1 ; ...; pm , xm) is equal to

RDU( p1 , x1 ; ...; pm , xm)= :
m

i=1

? iU(x i) (6)
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and the decision weights ?i are computed as

?j=w \ :
j

i=1

pi+&w \ :
j&1

i=1

p i+ , (7)

where w is a probability weighting function (with w(0)=0, w(1)=1); monotonic (if
a>b then w(a)>w(b)), but not necessarily additive (w(a+b){w(a)+w(b) can
happen). If the probability weighting function is additive (w(a+b)=w(a)+w(b)),
then rank dependent utility theory reduces to expected utility theory. Equations (6)
and (7) show that rank dependent weighting is captured by making the probability
weights dependent on the outcome distribution. This distinguishes rank dependent
utility from for example lottery dependent utility (Becker 6 Sarin, 1987), where the
outcome weighting is dependent on the probability distribution. To make this
distinction clear and to avoid any ambiguities, we use throughout the remainder of
the paper the term ``probability weighting'' instead of ``rank dependent weighting.''

Based on empirical research, several authors3 have argued that the probability
weighting function w has an inverse S-shaped form, which starts off concave (i.e.,
it overweights low probabilities) and then becomes convex (i.e., it underweights
intermediate and high probabilities). In particular, Tversky 6 Kahneman (1992)
have suggested a parsimonious one parameter functional form:4

w( p)=
p#

[ p#+(1& p)#]1�# . (8)

If #=1 then w( p)= p and expected utility theory results. For 0.27<#<1, Eq. (4)
produces the desired inverse S shape. Tversky 6 Kahneman (1992) found that # is
equal to 0.61 for gains and to 0.69 for losses. Slightly different estimates of # were
found by Camerer 6 Ho (1994) (#=0.56) and by Wu 6 Gonzalez (1996)
(#=0.71). In the latter two studies only gains were used in the experiments. These
estimates imply that the value of p for which the shape of w( p) changes from
concave to convex lies between 0.30 and 0.40.

We explained the standard gamble procedure in the Introduction and we showed
there that under expected utility theory, the QALY model, and the scaling U(1 year
in health state x)=1 and U(1 year in health state z)=0, the utility of health state
y is equal to the indifference probability p$. If we evaluate the standard gamble by
rank dependent utility (Eq. (6)) instead of expected utility then given the QALY
model and the above scaling it follows that V( y)=w( p$). The Tversky 6 Kahneman
probability weighting function (Eq. (8)) with # equal to one of the values found in
previous studies implies that if the indifference probability is lower than
approximately 0.35, health state utilities with probability weighting will be higher
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Wakker (1995).
4 Prelec (1998) proposed an alternative one parameter functional form for the inverse S shape:

w( p)=exp(&(&ln p)#). As in Tversky and Kahneman's function, if #=1, w( p)= p and if #<1 the
function becomes more regressive. Wu 6 Gonzalez (1996) found that Prelec's function fitted worse than
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than health state utilities without probability weighting; if the indifference probability
is higher than approximately 0.35, health state utilities with probability weighting
will be lower than health state utilities without probability weighting.

3. EXPERIMENT

3.1. Aim

The experiment aimed to compare the descriptive validity of QALYs with prob-
ability weighting with QALYs without probability weighting. Descriptive validity is
assessed by a comparison with individual preferences which were elicited by a direct
ranking task described below.

3.2. Subjects

Eighty student at the Stockholm School of Economics and 92 students at the
Erasmus University Rotterdam participated in the study. They were offered 815 for
their participation.

3.3. Procedure

The experiment was carried out in different sessions with on average 10
respondents per session. Before the experiment was carried out, the questionnaire
was tested both in Stockholm and in Rotterdam with faculty staff members as
respondents.

3.4. Health State

The health state we selected corresponds to a severe type of lower back pain. We
chose a fairly common health problem to make it easier for respondents to imagine
the problem. We described the health state by level of functioning on four
attributes: general daily activities, self care, leisure activities, and pain. Table 1

TABLE 1

The Health States ``Severe Lower Back Pain'' and ``Full Health''

Severe lower back pain

v Unable to perform some tasks at home and�or at work
v Able to perform all self cares activities (eating, washing, dressing) albeit with some difficulties
v Unable to participate in many types of leisure activity
v Often moderate to severe pain and�or other complaints

Full health

v Able to perform all tasks at home and�or at work without problems
v Able to perform all self care activities (eating, washing, dressing) without problems
v Able to participate in all types of leisure activity without problems
v No pain or other complaints
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describes the selected health state to which we refer in the remainder of this paper
as ``severe lower back pain.'' Table 1 also describes the health state ``full health,''
which was defined as no limitations on each of the four attributes.

3.5. Task

Subjects were faced with a standard gamble question in which the certain option
was living for 30 years with severe lower back pain and the treatment option was
(30 years in full health, p; immediate death). They were told that all profiles were
followed by death after 30 years. Subjects had to indicate the value of p for which
they were indifferent between these two options on a line of values for p, calibrated
between 0 and 1 with ticks 0.01 point apart. Next to this line a line was drawn with
the corresponding value of 1& p. This was done to remind respondents what a
choice of p implied in terms of the probability of immediate death. By this proce-
dure, we hoped to control for a potential framing bias: only displaying the
probability of successful treatment might lead to too strong a focus on the outcome
of successful treatment, full health.

Subjects were encouraged to use a bounding method in answering the question-
naire: they were asked first to indicate those values of p for which they definitely
preferred 30 years with severe lower back pain, then those values of p for which
they definitely preferred the treatment option, and finally those values of p for
which they did not have a preference for one of the options. We encouraged sub-
jects to make this latter range of values as small as possible, but we did not force
them to state just one indifference value. Subjects are not used to express gains in
quality of life on a probability scale and most of them had never actually experi-
enced severe lower back pain. Determining preferences by an unfamiliar method, in
a limited time period, and for a health state subjects have not lived through, may
cause preferences to be somewhat imprecise. We thought it better to allow subjects
to express this imprecision of preference. In the analyses we used the midpoint of
the given range of values. To examine the sensitivity of the results we performed
separate analyzes with the upper limit and the lower limit of the range of values.

After they had completed the standard gamble question, subjects were asked to
rank seven health profiles. The health profiles were printed on separate cards and
were presented in random order. Table 2 describes the seven profiles. All profiles
were followed by death. If profiles consisted of both years with severe lower back
pain and years in full health, then the years in full health always came first. We learned
from pilot sessions that profiles of decreasing quality of life were more in line with
people's expectations and therefore easier to process. The rank order of several of
the profiles is self-evident. If subjects' preferences are monotonic with respect to
life-years, in the direction that more life years are preferred, then the rank order of
profiles 2�5 is obvious. We included all these profiles in the experiment to ensure
enough variation in the ranking of the profiles over a wide range of quality weights.

The aim of the ranking exercise was to elicit individual preferences directly. The
ranking section was always performed after the standard gamble assessment. We
chose this order of the tasks because we thought that it might increase the
reliability of the data. To compare the profiles in the ranking task, subjects must
make trade-offs between quality of life and quantity of life. These trade-offs are
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TABLE 2

The Seven Health Profiles Used in the Experiment

Number profile Years in full health Years with severe lower back pain

1 0 20
2 18 0
3 16 0
4 14 0
5 12 0
6 8 8
7 6 11

easier to make if subjects have an impression of the difference in utility between full
health and severe lower back pain. By doing the standard gamble assessment,
where the time dimension is held fixed, first, we hoped that subjects would get a
better understanding of the utility difference between severe lower back pain and
full health.

3.6. Methods

From the indifference value p elicited by the standard gamble question we can
calculate the utility of severe back pain both with and without probability weight-
ing. We used the Tversky 6 Kahneman probability weighting function (Eq. (8)) to
compute the utility of severe back pain with probability weighting. The utility
of severe back pain was then used to compute for each of the profiles the number
of QALYs with and without probability weighting. We calculated for each profile
and for each subject the number of QALYs with probability weighting for all
theoretically allowed values of # (0.27�#�1). For each subject and for each value
of # the predicted QALY ranking was then compared with the ranking that was
elicited directly. We assessed the strength of the association between the predicted
QALY ranking and the direct ranking by the Spearman rank correlation coefficient.
Finally, we determined the value of # for which the Spearman rank correlation coef-
ficient was maximal and we compared this maximal value with the value of the
Spearman rank correlation coefficient when no probability weighting was applied.
We determined the maximizing value of # by two approaches. In the first approach
we excluded individual-specific differences and we used just one value of # for all
subjects. That is, for each value of # we determined for each subject the Spearman
rank correlation coefficient and we then averaged these over all subjects. This pro-
cedure is most relevant to the use of QALYs in societal decisions on resource
allocation where one is interested in the preferences of the ``representative
individual'' and individual-specific differences are of less importance. In the second
approach we determined for each individual separately the value of # for which the
Spearman rank correlation coefficient was maximized and we then calculated the
average of these maximized Spearman rank correlation coefficients. This procedure
is most relevant for individual medical decision making where individual differences
are clearly important.
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4. RESULTS

We present the results for the total sample. The results did not differ significantly
between the Dutch and the Swedish samples. It further turned out that the results
are not sensitive to whether the lower limits, the middle points or the upper limits
of the ranges of indifference probabilities are used in the analysis. We therefore
only present the results based on the middle points of the ranges of indifference
probabilities.

Figure 1 shows the distribution of the indifference probabilities elicited by the
standard gamble procedure. The indifference probabilities range between 0 and 1,
with a mean of 0.668 (standard error=0.019) and a median of 0.715. Given the
estimates of the probability weighting parameter # found by Camerer 6 Ho (1994),
Tversky 6 Kahneman (1992), and Wu 6 Gonzalez (1996), most respondents are
on the convex part of the probability weighting function.

Figure 2 gives the results for the procedure in which individual-specific differences
were ignored. The figure shows the graph of the average Spearman rank correlation
coefficient as a function of #. The graph reaches its maximum at #=0.69
(RCC=0.809). The figure also shows that the rank correlation coefficients do not
vary much over a rather wide range of values of #. In fact, the rank correlation coef-
ficients do not differ significantly (:=0.05) for values of # between 0.54 and 0.72.
This range includes the estimates of Camerer 6 Ho (1994) (0.56), Tversky 6

Kahneman (1992) (0.61 for gains and 0.69 for losses), and Wu 6 Gonzalez (1996)
(0.71).

Even if we ignore individual-specific differences, QALYs with probability weighting
(#=0.69) are significantly more consistent with the directly elicited ranking than
QALYs without probability weighting: the average rank correlation coefficient rises
from 0.730 to 0.809 ( p<0.001).

FIG. 1. The distribution of the elicited indifference probabilities.
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FIG. 2. Mean Spearman rank correlation coefficients as a function of the value of #.

The above analysis ignores individual-specific differences. However, Gonzalez
(1993) has shown that there is substantial across-subject heterogeneity in weighting
function parameters. We therefore also determined the maximum value when
individual-specific differences are taken into account. These data should be inter-
preted with caution. If monotonicity with respect to years in full health holds, and
none of our subjects violated this, then the number of degrees of freedom in each
individual estimation is low, which may lead to instable estimations. For most sub-
jects there was a range of values of # for which the RCC was maximal. The analysis
has been based on the midpoint of this range.

Figure 3 displays the distribution of the maximizing value of #. The figure shows
that the distribution is centered around #=0.65. Taking into account individual-
specific differences increases the average rank correlation coefficient to 0.937
( p<0.001). The lack of degrees of freedom in the individual estimations led to
rather wide ranges of values of # for which the Spearman rank correlation coef-
ficient was maximized. The average size of the range of maximizing values was 0.30.
For 68 subjects #=1 was included in the range of optimal values, which implies
that for these subjects probability weighting did not increase the consistency of
QALYs with the individual choices.

What is the reason that QALYs with probability weighting are more consistent
with the directly elicited ranking? For the maximizing values of # found above,
most subjects are on the convex part of the probability weighting function and
therefore underweight probabilities. By consequence, for most subjects probability
weighting leads to a lower utility for severe lower back pain. The higher consistency
of QALYs with probability weighting indicates that if probability weighting is not
taken into account then quality weights will be too high (given common scaling).
The standard gamble we used is a probability equivalence method and our results
are in line with other studies that found similar overestimation of utilities by prob-
ability equivalence methods (Hershey 6 Schoemaker, 1985; Wakker 6 Deneffe,
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FIG. 3. The distribution of the values of # for which the Spearman rank correlation coefficient is
maximal.

1996). Hence, we are inclined to conclude that the major improvement of probability
weighting is that it adjusts an upward bias that is present in probability equivalence
methods. This is confirmed if we split the sample in a group that is on the concave
part of the weighting function ( p<0.38) and in a group that is on the convex part
of the weighting function ( p�0.38). In the group that is on the concave part of the
weighting function, for which probability weighting leads to a higher utility, the
rank correlation coefficients for QALYs with probability weighting and for QALYs
without probability weighting are equal5 ; in the group that is on the convex part
of the weighting function, the average rank correlation coefficient for QALYs with
probability weighting is about 0.10 higher than the average rank correlation
coefficient for QALYs without probability weighting if we ignore individual-specific
differences and 0.25 higher if individual-specific differences are taken into account
( p<0.001 in both comparisons).

5. UTILITY CURVATURE

As we noted in the Introduction, the results presented in Section 4 may to some
extent have been confounded by violations of the conditions underlying the QALY
model. We therefore reanalyzed the data replacing the linear utility function for
life-years of Eq. (1) by a nonlinear function.

We examined two specifications of the utility function for life-years. The first is
the log�power family, W(t)=tr, which has been used in medical decision making by
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Pliskin et al. (1980), Miyamoto 6 Eraker (1985), and Stiggelbout et al. (1994) and
for monetary outcomes by Tversky and Kahneman (1992), Camerer 6 Ho (1994),
and Wu 6 Gonzalez (1996). The second specification is the linear�exponential
family W(t)=e&ct, which has been frequently applied in decision analyses because
it corresponds to constant rate discounting (e.g., Viscusi 6 Moore, 1989; Moore
6 Viscusi, 1990).

Pratt (1964) and Miyamoto (1988) have derived simple conditions which charac-
terize these two families of utility functions for expected utility and general rank
dependent utility, respectively. Miyamoto 6 Eraker (1989) tested these conditions
and found that even though neither model gave a good description for individual
subject data, the linear�exponential utility model was an excellent approximation
for data averaged across individuals.

We analyzed the data both with and without allowance for individual-specific
differences. We calculated the maximum Spearman rank correlation coefficient
both for the model in which the utility function for life-years can be nonlinear, but
there is no probability weighting (QALYUC) and for the model in which the utility
function for life-years can be nonlinear and there is probability weighting
(QALYUC+PW). In the latter model we had to determine the maximizing values of
two coefficients: the coefficient that reflects curvature of the utility function (either
r or c) and the coefficient of the probability weighting function (#).

Tables 3 and 4 show the maximizing rank correlation coefficients when
individual-specific differences are ignored. Table 3 displays the results for the
log�power family. The range of power coefficients we examined includes the overall
estimates from the studies by Stiggelbout et al. (r=0.74), by Miyamoto 6 Eraker
(r varies between 0.91 and 1.10 for different age groups), and by Pliskin et al.

TABLE 3

Mean Spearman Rank Correlation Coefficients (RCC) for QALYs with Only Utility Cur-
vature but No Probability Weighting (QALYUC) and for QALYs with Both Utility Curvature
and Probability Weighting (QALYUC+PW)

Power coefficient (r) RCC QALYUC RCC QALYUC+PW Maximizing value of #

0.25 0.774a 0.782b 0.93
0.5 0.770a 0.793 0.78
0.75 0.767a 0.802 0.72
0.9 0.749a 0.806 0.64
1.1 0.706a 0.813 0.64
1.25 0.678a 0.815 0.59
1.5 0.648a 0.806 0.53
1.75 0.616a 0.785b 0.49

Note. The utility function is from the log�power family.
a significantly different from RCC of QALYs with only probability weighting (#=0.69) at the 10

significance level.
b significantly different from RCC of QALYs with only probability weighting (#=0.69) at the 50

significance level.
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TABLE 4

Mean Spearman Rank Correlation Coefficients (RCC) for QALYs with Only Utility
Curvature but No Probability Weighting (QALYUC) and for QALYs with Both Utility
Curvature and Probability Weighting (QALYUC+PW)

Exponent (c) RCC QALYUC RCC QALYUC+PW Maximizing

&0.10 0.581a 0.774a 0.49
&0.05 0.635a 0.812 0.52
&0.03 0.665a 0.814 0.58
&0.01 0.706a 0.812 0.65

0.01 0.744a 0.808 0.63
0.03 0.767a 0.803 0.70
0.05 0.776a 0.802 0.77
0.10 0.782a 0.791 0.83

Note. The utility function is from the linear�exponential family.
a significantly different from RCC of QALYs with only probability weighting (#=0.69) at the 10

significance level.
b significantly different from RCC of QALYs with only probability weighting (#=0.69) at the 50

significance level.

(r=1.14).6 Table 3 shows that if the utility function for life years is concave (r<1),
then QALYs with only utility curvature but no probability weighting are more con-
sistent with the directly elicited ranking than QALYs without both utility curvature
and probability weighting. However, for all values of the power coefficient, QALYs
with only utility curvature but no probability weighting are less consistent with the
directly elicited ranking than QALYs with only probability weighting and no utility
curvature (#=0.69). The difference is significant at the 10 level. Further, QALYs
with both utility curvature and probability weighting are not significantly more
consistent with the directly elicited ranking than QALYs with only probability
weighting but no utility curvature ( p>0.05). This suggests that the adjustment for
probability weighting is more important to improve the consistency of QALY based
analyses than the adjustment for utility curvature.

Table 4 shows the results for the linear�exponential family of utility functions.
A positive value of the exponent c corresponds to a concave utility function for life-
years. Table 4 confirms the above pattern: QALYs with a concave utility function
for life-years are more consistent with the direct ranking than QALYs with a linear
utility function for life-years, QALYs with only probability weighting are more con-
sistent with the direct ranking than QALYs with only utility curvature, and QALYs
with both utility curvature and probability weighting are not significantly more
consistent with the direct ranking than QALYs with only probability weighting.

Figures 4 and 5 show the results of the analysis when individual-specific differ-
ences are taken into account. The figures show the distributions of the maximizing
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example year 20 and year 19 is greater than the utility difference between year 1 and year 0. Finding
values of r greater than one may be a consequence of violations of the underlying utility model.



FIG. 4. The distribution of the values of the power r for which the Spearman rank correlation
coefficient is maximal.

FIG. 5. The distribution of the values of the exponent c for which the Spearman rank correlation
coefficient is maximal.
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values of the power coefficient and the exponential coefficient respectively for
QALYs with utility curvature but without probability weighting. The distributions
are essentially two peaked: there is a group of subjects for whom the linear utility
function fits best and there is a group of subjects for whom the utility function for
life-years is concave. The individual-specific analysis further reveals that the power
family is more consistent with the direct ranking than the exponential family: the
mean rank correlation coefficient for the power family is equal to 0.900 as opposed
to 0.861 for the exponential family. The difference is significant ( p<0.001). The
individual analysis confirms that QALYs with only probability weighting are more
consistent with the direct ranking than QALYs with only utility curvature. The
increase in the rank correlation coefficient is larger if we incorporate only probabil-
ity weighting in the QALY model (from 0.730 to 0.937) than if we incorporate only
utility curvature in the QALY model (maximal increase from 0.730 to 0.900). The
difference is significant ( p<0.001). A further increase in the rank correlation
coefficient is obtained by incorporating both probability weighting and utility cur-
vature (power function) in the QALY model: from 0.937 to 0.961. However, the
estimates of the coefficients # and r are very instable: for some subjects there were
over 1000 pairs of values for # and r that maximized the Spearman rank correlation
coefficient. This is due to a lack of degrees of freedom in the individual estimations.
Given monotonicity with respect to life-years only three profiles are free to vary. In
the QALY model with both probability weighting and utility curvature two
parameters have to be estimated which leaves only one degree of freedom.

The model U(q1 , ..., qT)=V(q1)* W(1)+ } } } +V(qT)* W(T ), which we used to
analyze nonchronic health states, only represents individual preferences if either
additive independence or generalized marginality holds. There exists no empirical
support for these conditions and we therefore reanalyzed the data using the multi-

TABLE 5

Mean Spearman Rank Correlation Coefficients (RCC) for QALYs with Only Utility Cur-
vature but No Probability Weighting (QALYUC) and for QALYs with Both Utility Curvature
and Probability Weighting (QALYUC+PW)

Power coefficient (r) SRCC QALYUC SRCC QALYUC+PW Maximizing value of #

0.25 0.849a 0.855a 0.94
0.5 0.840a 0.860a 0.81
0.75 0.841a 0.875 0.71
0.9 0.829a 0.883 0.64
0 0.813a 0.883 0.61
1.1 0.797a 0.884 0.63
1.25 0.781a 0.885 0.56
1.5 0.749a 0.893 0.53
1.75 0.713a 0.893 0.48

Note. The utility function is from the log�power family. Only chronic health profiles are included.
a significantly different from RCC of QALYs with only probability weighting (#=0.69) at the 10

significance level.
b significantly different from RCC of QALYs with only probability weighting (#=0.69) at the 50

significance level.
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plicative model U(Q, T)=W(T )* V(Q) for which more empirical support exists.
Because this model can only be applied to chronic health profiles, we had to
exclude profiles 6 and 7 from the analysis. Dropping profiles 6 and 7 means that
if monotonicity of preferences with respect to years in full health holds, then the
various models only have to explain where profile 1 fits in the rank ordering. So
there is only one degree of freedom left in each individual estimation and we there-
fore only report the results of the analysis in which individual-specific differences
are ignored. Tables 5 and 6 display the results for the power and exponential utility
functions respectively. Inspection of these tables confirms the pattern observed
above: QALYs with only probability weighting are more consistent with the direct
ranking than QALYs with only utility curvature; taking both utility curvature and
probability weighting into account does not lead to a significant further increase in
the consistency of QALYs with the direct ranking.

How can we explain that utility curvature in addition to probability weighting does
not further improve the consistency of QALY based decision making? We noted
above that the major improvement that is achieved through probability weighting
is that less weight is given to years with severe lower back pain. In the context of
our experiment utility curvature has the same impact if the utility function for life-
years is concave. The profiles we used are all of a decreasing quality: years with
severe lower back pain always came after years in full health. Both a utility function
with a power coefficient (r) less than 1 and a utility function with a positive expo-
nent (c) give less weight to more distant years, that is, to years with severe lower
back pain. In summary, probability weighting and utility curvature have the same
impact in the context of our experiment: to decrease the weight given to years with
severe lower back pain. However, the results suggest that probability weighting
does so in a way that is more consistent with individual preferences.

TABLE 6

Mean Spearman Rank Correlation Coefficients (RCC) for QALYs with Only Utility
Curvature but No Probability Weighting (QALYUC) and for QALYs with Both Utility
Curvature and Probability Weighting (QALYUC+PW)

Exponent (c) RCC QALYUC RCC QALYUC+PW Maximizing value of #

&0.10 0.673a 0.887 0.49
&0.05 0.733a 0.892 0.52
&0.03 0.764a 0.886 0.56
&0.01 0.797a 0.884 0.62

0.01 0.829a 0.881 0.69
0.03 0.840a 0.877 0.71
0.05 0.851b 0.874 0.77
0.10 0.858a 0.863a 0.86

Note. The utility function is from the linear�exponential family. Only chronic health profiles are
included.

a significantly different from RCC of QALYs with only probability weighting (#=0.69) at the 10

significance level.
b significantly different from RCC of QALYs with only probability weighting (#=0.69) at the 50

significance level.
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6. CONCLUSION

The main conclusion of this paper is that incorporating probability weighting in
the standard gamble method improves the consistency of QALY-based decision
making with individual preferences. Our research was motivated by an existing
impasse in health utility measurement: it is widely recognized that the standard
gamble is normatively more valid than the other methods of health utility measurement,
but the descriptive validity of the standard gamble is troublesome. The observed
anomalies in standard gamble measurement have undermined the faith in the
method and have contributed to the use of alternative methods that lack theoretical
validity in comparison with the standard gamble but that are easier to apply. The
lack of descriptive validity of the standard gamble has led researchers in the field
of health utility measurement to the conclusion that the standard gamble may be
ideal in theory but not very suitable in the practice of health utility measurement.
We have shown that a recent insight from the theory on decision under risk, prob-
ability weighting, can successfully be applied to increase the consistency of standard
gamble utilities with individual preferences. Previous research (Weber, 1994; Weber
6 Kirsner, 1997) has indicated that probability weighting occurs for motivational
reasons. Therefore, probability weighting may be relevant for prescriptive purposes
and can be used in health utility measurement to increase the descriptive validity
of the standard gamble without sacrificing its normative validity.

QALYs are used both as a utility-based outcome measure in societal decisions
about the allocation of health care resources and as a utility model in individual
medical decisions concerning the selection of appropriate treatment. Our results are
important for both applications of QALYs. If QALYs are used in social decision
making, individual-specific differences are less important and interest is primarily
focused on the results for the ``representative subject.'' We have shown that a signifi-
cant improvement in descriptive validity can be obtained if probability weighting
is incorporated in QALY-based decision making even when individual-specific dif-
ferences are ignored. We recommend that in economic evaluations of health care
programs where the standard gamble has been used, utilities are adjusted for prob-
ability weighting by the Tversky 6 Kahneman (1992) weighting function (Eq. (8))
with the value of # equal to 0.69. Individual-specific differences are obviously
relevant in medical decisions about the selection of appropriate treatment. Our
results indicate that using individual-specific rather than average estimates for the
probability weighting parameter # can further increase the consistency of utility
estimates. Individual estimation of the probability weighting parameter requires
additional elicitations, but this is worth the effort because it leads to more
representative utilities.

Thus far, studies have attempted to improve the consistency of QALYs with
individual preferences by focusing on the utility function for life-years. People have
used power utility functions and exponential utility functions instead of the linear
function of the QALY model (Eq. (1)). Our results imply that a larger gain in con-
sistency can be obtained by probability weighting. This is not to say that one could
just stick to the linear utility function. There are some indications in our results that
a concave utility function may lead to a further increase in consistency. However,
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the results clearly show that only focusing on the utility part of QALYs while ignor-
ing the impact of probability weighting is not a fruitful strategy. Future research on
health utility measurement, both theoretical and empirical, should also be directed
at the modeling of probability weighting.

One might criticize our study for being overly preoccupied with statistical
significance, ignoring the question whether the differences between the average rank
correlation coefficients are actually meaningful. It is true that all rank correlation
coefficients are high and according to classification schemes (Landis 6 Koch, 1977)
generally fall in the same category. However, this is an artifact of the inclusion of
profiles for which the ordering follows naturally from monotonicity of preferences
with respect to years in full health. We had to include these profiles to ensure
enough variation in the ranking of the profiles over a wide range of quality weights,
but a disadvantage of their inclusion is that they inflate the rank correlation coef-
ficients. If we only include profiles for which the ordering does not follow naturally
from monotonicity with respect to years in full health, the rank correlation coef-
ficients drop considerably. If we only include profiles 1, 4, 6, and 7, the maximum
rank correlation coefficient for QALYs with probability weighting (#=0.69)
becomes 0.446 and the rank correlation coefficient for QALYs without probability
weighting becomes 0.286; if we only include profiles 1, 5, 6, and 7, the maximum
rank correlation coefficient for QALYs with probability weighting (#=0.69)
becomes 0.487 and the rank correlation coefficient for QALYs without probability
weighting becomes 0.362. The differences between the rank correlation coefficients
are significant ( p<0.01) and the correlation coefficients fall in different categories
of the Landis 6 Koch classification scheme, which suggests that they are also
meaningful.

There are several limitations of our study that may be addressed in future
research. First, we implicitly assumed that individual preferences can be measured
by simultaneously ranking the seven profiles. A different procedure is to ask
subjects to make pairwise choices between the profiles and to derive the ranking of
the profiles from these answers. It is not clear whether the two procedures lead to
identical rankings and which procedure is to be preferred. On the one hand,
pairwise choices may be slightly more in line with the basic primitive of decision
theory, preference over pairs of alternatives, on the other hand, a pairwise choice
procedure is vulnerable to intransitivities (Tversky, 1969) and intransitivity is
highly undesirable from a normative point of view.

Second, few of our subjects had actually ever experienced severe back pain, which
utility they had to elicit. Hence, our results are based on predicted utility, which as
recent research by Kahneman and others has shown may be different from
experienced utility (Fredrickson 6 Kahneman, 1993; Kahneman, Fredrickson,
Schreiber, 6 Redelmeier, 1993; Varey 6 Kahneman, 1992; Kahneman, Wakker,
6 Sarin, 1997). The distinction predicted utility versus experienced utility touches
on the discussion whose preferences should count in medical decision making. For
individual medical decision making, it is obvious that the preferences of the patient
should count, and in that context experienced utility may be more relevant than
predicted utility. Societal decisions about which programs to fund affect both
patients and nonpatients and in this context the preferences of those who have
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never experienced the health states (and thus predicted utility) are relevant. There-
fore, our results may be more relevant for societal decision making than for
individual decision making and it would be interesting to repeat our experiment in
the context of individual medical decision making with patients instead of students
as experimental subjects.

The selection of the type of profiles may also have affected our results. We selec-
ted profiles of decreasing quality, because we had learned from pilot sessions that
subjects found such profiles easier to imagine. However, the selection of profiles of
decreasing quality makes that our conclusion about the impact of utility curvature,
that concave utility is most consistent with individual preferences, is somewhat
tentative. As we explained in Sections 4 and 5, we believe that the reason why
probability weighting and concave utility improve the consistency of QALYs with
individual preferences is because they decrease the weight given to years with severe
back pain. Previous studies have also shown that the use of a probability equiv-
alence method leads to utilities that are too concave (given common scaling). If we
use profiles of decreasing quality then concave utility will imply that less weight is
given to the utility of severe back pain. However, if profiles of increasing quality are
used then concave utility will give extra weight to the years with severe back pain.
Therefore, if our hypothesis is true then we should find that for profiles of increasing
quality convex utility is more consistent with individual preferences than concave
utility.

We do not believe that our conclusions about the impact of probability weighting
are sensitive to the selection of the health profiles. However, they may be sensitive
to the selection of the health state and it is certainly interesting to examine the
robustness of our conclusions in designs that involve other health states. In
particular, it is interesting to examine whether our conclusions still hold for health
states which are only slightly preferred to death. For such health states we expect
the median indifference probability to be smaller than 0.3 and the majority of
subjects will be on the concave part of the weighting function. This implies that
probability weighting leads to utilities that are higher than the utilities elicited
without probability weighting. If the hypothesis that QALYs with probability
weighting are more consistent with individual preferences than QALYs without
probability weighting because probability weighting adjusts the utility of severe
back pain downward is true, then it cannot be excluded that probability weighting
will be less consistent with individual preferences for health states that are only
slightly more attractive than death.

A final issue that could be addressed in future research is the impact on the
results of the mode of assessment of the indifference probabilities. We asked subjects
to determine an indifference probability by crossing the probabilities for which they
had a clear preference for one of the options, which is a type of matching task. An
alternative method is to establish indifference from a series of binary choices. The
results from these two procedures need not be equivalent. Bostic, Herrnstein,
6 Luce (1990) have examined the two procedures and they found that binary
choice tasks lead to less inconsistencies in preferences than matching tasks. These
findings suggest that our approach of relying on a matching task may have intro-
duced biases in the elicited probabilities that could be avoided by using a choice
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task. The work by Tversky, Sattah, 6 Slovic (1988) on scale compatibility effects
shows that the characteristics of the task and of the response scale prime the most
compatible features of the stimulus. In the matching task, the response scale is
the probability of successful treatment. In answering the gamble question, scale
compatibility predicts that people anchor on the probability in the certain outcome,
which is equal to one, and then adjust downward. This adjustment is generally
insufficient and hence the matching task we used may have led to an overestimation
of true utilities.

This paper has shown that there are ways to improve the descriptive validity of
standard gamble measurement without sacrificing its normative appeal. This is an
important conclusion. Previous research has displayed anomalies of the standard
gamble. Two courses of action are possible in response to these anomalies: first, one
could seek and develop alternative methods that avoid the inconsistencies in
standard gamble measurement; second, one could try to improve the descriptive
validity of the standard gamble. The first reaction has been typical in health utility
measurement. A disadvantage of this approach is that the theoretical basis of these
alternative methods is often unclear and that they lack validity as utilities in
decision under risk. Most medical decision making takes place under risk and it
is obviously desirable to use utilities that are valid in this context. The standard
gamble elicits utilities that are valid in decision under risk and we therefore believe
that the second reaction, to improve the descriptive validity of standard gamble
measurement, is the preferred course of action. In this paper, we have shown that
an important improvement in the descriptive validity of the standard gamble can be
obtained by incorporating probability weighting in medical decision making.
Incorporating probability weighting in practical applications of QALYs is straight-
forward. We encourage future research, both theoretical and practical, to find
further ways to improve the descriptive validity of standard gamble measurement.
It is only through such work that methods can be developed that truly represent
individual preferences for health.
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