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a b s t r a c t

Utility independence is a central condition in multiattribute utility theory, where attributes of outcomes
are aggregated in the context of risk. The aggregation of attributes in the absence of risk is studied
in conjoint measurement. In conjoint measurement, standard sequences have been widely used to
empirically measure and test utility functions, and to theoretically analyze them. This paper shows that
utility independence and standard sequences are closely related: utility independence is equivalent to a
standard sequence invariance condition when applied to risk. This simple relation between two widely
used conditions in adjacent fields of research is surprising and useful. It facilitates the testing of utility
independence because standard sequences are flexible and can avoid cancelation biases that affect direct
tests of utility independence. Extensions of our results to nonexpected utilitymodels can nowbe provided
easily. We discuss applications to the measurement of quality-adjusted life-years (QALY) in the health
domain.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Utility independence is widely used in decision analysis for
attribute aggregation in risky decisions (Engel & Wellman, 2010;
Guerrero & Herrero, 2005; Keeney & Raiffa, 1976). In medical
decision making, utility independence underlies the health util-
ity index, a widely used method to derive utilities for multi-
attribute health states (Feeny, 2006; Feeny et al., 2002). Anal-
yses of utility independence are usually based on the nor-
matively convincing, but descriptively problematic, expected
utility theory for choices between risky prospects (probability
distributions over outcomes). Then the condition usually im-
plies that multiattribute utility is additive, multiplicative, or
multilinear.

Utility independence concerns situations where the levels of
some attributes are fixed deterministically. The condition then
requires that preferences between prospects over the remaining
attributes should be independent of the fixed deterministic levels.
This requirement has often been tested directly (Bleichrodt &
Johannesson, 1997; Bleichrodt & Pinto, 2005; Miyamoto & Eraker,
1988; Spencer & Robinson, 2007). One problem with direct tests
of utility independence is that they induce subjects to ignore the
common fixed values, not because this is their true preference but
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rather as a heuristic to simplify the task before any consideration
of true preference (Kahneman & Tversky, 1979, the cancelation
heuristic). That such distorting heuristics can sometimes increase
consistency, misleadingly suggesting verification of preference
conditions, was emphasized by Loomes, Starmer, and Sugden
(2003). For direct tests of utility independence the cancelation
heuristic will indeed create artificial support for the condition.

A second problem with traditional analyses of utility indepen-
dence is that they have been based on expected utility maximiza-
tion. There is, however, much evidence that expected utility is
violated empirically (Allais, 1953; Ellsberg, 1961; Kahneman &
Tversky, 1979; Starmer, 2000). Extensions of utility independence
to nonexpected utility models include Bier and Connell (1994),
Bleichrodt, Schmidt, and Zank (2009), Bouyssou and Pirlot (2003),
Dyckerhoff (1994), and Miyamoto and Wakker (1996).

The aggregation of attributes is also studied in conjoint mea-
surement (Krantz, Luce, Suppes, & Tversky, 1971). Unlike multiat-
tribute utility theory and decision analysis, conjoint measurement
does not assume risk to be present. However, one can still use the
techniques of conjoint measurement in the presence of risk. This is
the approach to multiattribute utility taken in this paper. A com-
mon technique underlying many results in conjoint measurement
is the construction of standard sequences.1 These are sequences

1 See Abdellaoui (2000), Baron (2008, Chs. 10 and 14), Booij and van de Kuilen
(2009), Fishburn and Rubinstein (1982, pp. 682–3 and Fig. 1), Loewenton and Luce
(1966), von Winterfeldt and Edwards (1986, p. 267).

http://dx.doi.org/10.1016/j.jmp.2011.08.001
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of attribute levels that are equally spaced in utility units, endoge-
nously derived from preferences without using the utility func-
tion. In marketing, standard sequences are used in the saw-tooth
method (Fishburn, 1967; Louviere, Hensher, & Swait, 2000). Krantz
et al. (1971) explain the importance of standard sequences in great
detail. Many preference conditions amount to invariance of par-
ticular standard sequences. By imposing such specific invariance
conditions, specific functional forms of the multiattribute utility
function can be derived.2

This paper shows that there exists a surprisingly simple relation
between multiattribute utility and conjoint measurement: utility
independence is equivalent to a version of standard sequence
invariance. This opens new and useful ways to analyze utility
independence. Standard sequence techniques are flexible and
efficient and they can avoid the aforementioned cancelation bias.
Further, they give direct quantitative measurements of utility,
which is useful in its own right. They do not directly appeal to risk,
as does utility independence, but they focus on tradeoffs between
attributes, avoiding the complications of risky decisions. Finally,
they can easily be extended to nonexpected utilitymodels, offering
the possibility to design tests of utility independence that are
robust to violations of expected utility.

2. Notation

We start by assuming a simple model on a simple domain
(a rank-ordered set of binary prospects) that is present as a
substructure in expected utility but also in most nonexpected
utility models. In all these models, the theorems that we obtain
within the simple model immediately extend to the whole model.
Consequently, our main result, Observation 5.2, applies to all
these (non)expected utility models. Miyamoto andWakker (1996)
similarly used rank-ordered binary prospects to obtain results for
many nonexpected utility theories.

We consider decision under uncertainty with one event E. E is
uncertain in the sense that the decision maker does not know for
sure if it is true (‘‘will happen’’) or not. An objective probability
p of E may (the case of risk) or may not (the case of uncertainty
and ambiguity) be given. Our analysis applies to either case. We
consider prospects xEy yielding outcome x if E is true and outcome
y otherwise. If an objective probability p is given for E, then we can
also write xpy. X denotes the outcome set.

A preference relation < is given over the outcomes. The domain
of prospects is rank-ordered: We assume without further mention
that always x < y in prospects xEy. The resulting rank-ordered3 set
of prospects is denoted X2

↓
. A preference relation <′ is given on X2

↓
.

Constant prospects, xEx, definitely yielding outcome x are identified
with that outcome x. The preference relation <′ generated over
outcomes is assumed to agree with <. Thus <′ defined over
prospects is an extension of < defined over outcomes. We will
therefore write < instead of <′ henceforth. Strict preference and
indifference are defined as usual, and are denoted ≻ and ∼.

We assume that the outcome set X is a two-attribute product
set Q × T , with generic element x = (Q , T ). Q designates the
first attribute and T designates the second, and Q and T are
attribute sets. For example, if outcomes are chronic health states
then Q designates a health state and T designates a time period
(life duration). The extension of our results to cases of more than
two attributes will be presented in Section 5.

2 See Bouyssou and Pirlot (2004), Casadesus-Masanell, Klibanoff, and Ozdenoren
(2000), Ebert (2004), Fishburn and Edwards (1997, Axiom 8), Gilboa, Schmeidler,
and Wakker (2002), Harvey (1986, p. 1126), Krantz et al. (1971), Nau (2006, Axiom
4), Schmidt (2003), Skiadas (1997), Stigler (1950), Tversky and Kahneman (1992),
Tversky, Sattath, and Slovic (1988), Wakker (1984), Wakker (2010), Wakker and
Tversky (1993).
3 Another widely used term in the literature is comonotonic.
We assume throughout that preferences over prospects (Q1,
T1)E(Q2, T2) can be represented by

πU(Q1, T1) + (1 − π)U(Q2, T2). (2.1)

Here U : Q × T → R is the utility function, whose particular form
is the central topic of multiattribute utility and of this paper. The
decision weight of event E is 0 < π < 1. Eq. (2.1) includes virtually
all decision theories known today. Well-known examples are: (a)
Expected utility where π = P(E) is the probability of event
E, objective in the case of risk and subjective in the case of
uncertainty; (b) rank-dependent utility for risk (Quiggin, 1982)
where π = w(p) with p the objective probability of event E
andw a probability weighting function; (c) rank-dependent utility
for uncertainty (also called Choquet expected utility) or prospect
theorywhereπ = W (E)withW a nonadditiveweighting function
or capacity (for gains under prospect theory); (d)maxmin expected
utility (Gilboa & Schmeidler, 1989). Further details are in the
footnote to Observation 5.2, and in Wakker (2010, Sections 6.11
and 10.6).

3. Utility independence

The second attribute T is utility independent if

(Q , T1)E(Q , T2) < (Q , T3)E(Q , T4)
⇔

(Q ′, T1)E(Q ′, T2) < (Q ′, T3)E(Q ′, T4) (3.1)

for all Q ,Q ′ and for all T1, T2, T3, T4. That is, preferences do not
depend on the particular deterministic level at which Q is fixed.
As throughout, it is implicitly assumed that all prospects are
contained in X2

↓
. Preferential independence is utility independence

restricted to constant prospects:

(Q , T1) < (Q , T3)
⇔

(Q ′, T1) < (Q ′, T3). (3.2)

In economic consumer theory, preferential independence is known
as separability of T , and in conjoint measurement (Krantz et al.,
1971) it is part of joint independence. Preferential independence
implies that we can define preferences over the second attribute
T independently from the first attribute. It is naturally satisfied if
T is an interval and monotonicity holds. A convenient implication
of preferential independence is that changing Q in Eq. (3.1) does
not affect rank-ordering. That is, the upper two prospects in
Eq. (3.1) are contained in X2

↓
if and only if the lower two are.

Utility independence of T holds if U is additive (U(Q , T ) =

V (Q ) + W (T )) or multiplicative (U(Q , T ) = V (Q )W (T )) with all
values V (Q ) of the same sign, which can then be taken positive.
Under additional conditions, utility independence is not only
necessary, but also sufficient for U being additive or multiplicative
(Miyamoto & Wakker, 1996, Theorem 3). Then, in Eq. (3.3) below,
f or g has to be constant. The following theorem extends a well
known result from classical setups to our domain X2

↓
.

Theorem 3.1. Assume that the image of the function T → U(Q , T )
is an interval for all Q . Then T is utility independent if and only if

U(Q , T ) = f (Q )V (T ) + g(Q ) (3.3)

for some functions f , V , g with f positive. �

4. Standard sequence invariance

A convenient feature of the standard sequence technique
introduced next is that it is directly related to the empirical
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measurement of utility. T0, . . . , Tn is a (Q -)standard sequence if
there exist Q ∗, Tg , and TG such that, for i = 0, . . . , n − 1,

(Q ∗, Tg)E(Q , Ti+1) ∼ (Q ∗, TG)E(Q , Ti). (4.1)
(Q ∗, Tg) and (Q ∗, TG) are called gauge outcomes. They serve as
a measuring rod to peg out the standard sequence. For later
purposes, it is of interest to note that Q ∗ and Q can be different.
The proof of the following lemma is given in the main text because
it may be clarifying.

Lemma 4.1. Under Eq. (2.1), a Q -standard sequence is equally spaced
in utility units (U(Q , Ti+1) − U(Q , Ti) is independent of i).

Proof. By Eq. (2.1), the (1−π) weighted differences U(Q , Ti+1)−

U(Q , Ti) all match exactly the same π weighted difference
U(Q ∗, TG) − U(Q ∗, Tg). �

We now turn to comparisons of standard sequences for dif-
ferent values of Q . A Q -standard sequence T0, T1, T2, . . . and a
Q ′-standard sequence T ′

0, T
′

1, T
′

2, . . . are inconsistent if they satisfy
T0 = T ′

0 and T1 = T ′

1, but, for some i > 1, Ti and T ′

i are not equiva-
lent in the sense that (Q , Ti) � (Q , T ′

i ) or (Q ′, Ti) � (Q ′, T ′

i ).
4 Un-

der Eq. (2.1), inconsistencies are possible because equal spacedness
forU(Q ,.)need not correspondwith equal spacedness forU(Q ′ ,.).
Standard sequence invariance on T means that such inconsistencies
are excluded for all Q ,Q ′

∈ Q.

Theorem 4.2. Assume Eq. (2.1), with the image of the function T →

U(Q , T ) an interval for each Q . Preferential independence of T and
standard sequence invariance on T hold if and only if

U(Q , T ) = f (Q )V (T ) + g(Q ) (4.2)

for some functions f , V , g with f positive. �

The comparison of Theorems 3.1 and 4.2 establishes an interest-
ing connection between conjoint measurement andmultiattribute
utility because the necessary and sufficient form in Eq. (3.3) is iden-
tical to that in Eq. (4.2): Under preferential independence and rich-
ness, standard sequence invariance on T is equivalent to utility
independence of T ! That is, we can test utility independence by
testing standard sequence invariance. We can now for instance
reduce the cancelation heuristic by taking different Q and Q ∗ in
Eq. (4.1). This way, we can avoid biases that have distorted tra-
ditional tests of utility independence. We will state the relations
between utility independence and standard sequence invariance
formally in the following section.

We next provide an axiomatization of multiplicative utility,
useful for QALYmeasurement in health (Section 6). We call T0 ∈ T
a null element if (R, T0) ∼ (R′, T0) for all R and R′.

Observation 4.3. Assume that Eqs. (2.1) and (4.2) hold. If T
contains a null element then g(Q ) is constant and can be taken
equal to 0, giving a multiplicative representation

U(Q , T ) = f (Q )V (T ). � (4.3)

For similar results, see Miyamoto, Wakker, Bleichrodt, and
Peters (1998, Theorem 3.1), and Bleichrodt and Pinto (2005,
Theorem 2). A remarkable implication of the above result is that
Q then also is utility independent on the subdomain where V is
positive (which excludes the null element).

We have defined standard sequences for outcomes under not-E,
that is, outcomes ranked worst and less preferred than the gauge
outcomes. Standard sequences can equally well be defined for
outcomes under E, when they are ranked best and are preferred
to the gauge outcomes, using the following indifferences:

(Q , Ti+1)E(Q ∗, Tg) ∼ (Q , Ti)E(Q ∗, TG). (4.4)

4 It can be seen that Eq. (2.1) implies Q ′
≠ Q .
For representation theorems, the topic of this paper, it is
desirable to use weak preference conditions in order to obtain the
logically strongest theorems. For empirical investigations it can
be interesting to consider more restrictive preference conditions,
to obtain more possibilities to falsify a theory or to measure its
concepts. Hence, for empirical purposes it may be interesting
to also consider standard sequences defined in Eq. (4.4) and to
investigate consistency properties between such larger classes of
standard sequences. It easily follows that we should also have
invariance here under Eq. (4.2).

Remark A.2 will indicate a mathematical generalization of our
theorems that we do not present in the main text because it loses
the empirically attractive reduction of the cancelation heuristic.
An interesting feature of the weaker preference condition used
there is that it is a common weakening of utility independence
and standard sequence invariance. Thus the two conditions are
different strengthenings of a common underlying necessary and
sufficient condition. This observation clarifies the mathematical
nature of our results.

5. Generalizations and main result

We first extend our results to n-attribute utility. Assume that
X is X1 × · · · × Xn for a natural number n ≥ 2, with generic
element (x1, . . . , xn). Let I ⊂ {1, . . . , n} and write T =

∏
i∈I Xi

and Q =
∏

i∉I Xi. We can write X = Q × T . Utility independence
of I is defined as utility independence of T (Eq. (3.1)). That is,
if the attribute levels outside of I are kept fixed at deterministic
levels, then the preferences generated over prospects over T are
independent of the deterministic levels chosen. We can define
standard sequences on

∏
i∈I Xi exactly as in Eq. (4.1), where now

Tg , Ti+1, TG, Ti ∈
∏

j∈I Xj, and Q ∗,Q ∈
∏

i∉I Xi. Standard sequence
invariance on

∏
i∈I Xi requires consistency between standard

sequences in
∏

i∈I Xi for all Q and Q ′ in
∏

i∉I Xi. The following
theorem immediately follows from Theorems 3.1 and 4.2.

Theorem 5.1. Assume a preference < on X2
↓
, with X = X1 ×· · ·×Xn,

and I ⊂ {1, . . . , n}. Let T =
∏

i∈I Xi and Q =
∏

i∉I Xi. Preferences
are represented by Eq. (2.1) (with T = (xi)i∈I and Q = (xi)i∉I ). The
image of (xi)i∈I → U((xj)j∉I , (xi)i∈I) is an interval for each (xj)j∉I .
Then I is utility independent if and only if

∏
i∈I Xi is preferentially

independent and standard sequence invariance holds on
∏

i∈I Xi. �

We next consider decision theories defined on general domains
of prospects, leading to our main result. Now prospects can
be probability distributions over outcomes with more than
one probability involved, or mappings from multi-element state
spaces to outcomes, and prospects need not all have the same
rank-ordering. The definition of utility independence needs no
adaptation: On all subproduct domains, preference is independent
of the deterministic level atwhich outside attributes are kept fixed.
We define standard sequence invariance by defining standard
sequences on all subsets isomorphic to X2

↓
(two outcomes and a

fixed event or probability, always with the same rank ordering).
No inconsistencies should result both within sets X2

↓
and across

different sets X2
↓
. In many theories, this definition can be extended.

For example, under rank-dependent utility it can be extended to
all multi-event sets of prospects that are comonotonic (defined
in Wakker, 2010, Section 10.12). For brevity, we do not elaborate
on this point.

Observation 5.2. Let X = X1 × · · · × Xn be a set of outcomes,
and let < be a preference relation on a set of prospects. Prospects
can be probability distributions over X (risk), or functions from a
state space S to X (uncertainty). The set of prospects is rich enough
to contain a set of the form X2

↓
. Preferences are represented by a
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model that implies Eq. (2.1) on X2
↓
with the same utility function

U as in Eq. (2.1) used throughout the domain. The utility function
is an interval scale, i.e. preferences are not affected if a constant is
added to utility or if utility is multiplied by a positive constant.5 If,
for a set I ⊂ {1, . . . , n}, the utility image of

∏
i∈I Xi is an interval

whenever the attributes outside of I are kept fixed, then utility
independence of I is equivalent to preferential independence of∏

i∈I Xi and standard sequence invariance on
∏

i∈I Xi. �

6. An application to health

This section applies the above results to medical decision
making. Outcomes (Q , T ) are chronic health states, with Q
describing the constant health state and T the life duration spent
in this health state, followed by death. Unlike in economics or
psychology, statistical probabilities of risks are often available in
the health domain. We will assume that prospects are probability
distributions over chronic health states.

The utility of life duration T is described by a function V .
The commonly found subjective time preferences and discounting
imply that V is concave, with future life years contributing less to
V than the first life years to come. Since the 1980s it has become
customary to correct life duration for quality of life, leading to the
QALY model f (Q )V (T ), where f designates the correction factor
due to the subjective quality of life of health state Q . The QALY
model is widely used in health policy.

Preference axiomatizations can serve to justify the use of
QALYs as outcome measure (Bleichrodt & Miyamoto, 2003;
Bleichrodt & Pinto, 2005; Bleichrodt & Quiggin, 1997; Bleichrodt,
Wakker, & Johannesson, 1997; Doctor, Bleichrodt, Miyamoto,
Temkin, & Dikmen, 2004; Doctor & Miyamoto, 2003; Miyamoto,
1999; Miyamoto & Eraker, 1988; Miyamoto et al., 1998; Pliskin,
Shepard, & Weinstein, 1980). Observation 4.3, combined with
Theorem 4.2, provides a new foundation of the QALY model with
standard sequence invariance instead of utility independence.
Here T = 0 life years naturally serves as the null element
required by Observation 4.3. Standard sequence invariance entails
that tradeoffs between life-years (discounting) are not different
under different health states. This condition will sometimes be
more intuitive than utility independence, which appeals to risk
attitudes for life-years rather than to direct tradeoffs between life-
years and intertemporal preferences.

Obviously, if standard sequence invariance is prescriptively
objectionable then Observation 4.3 shows that the QALY model
is prescriptively objectionable. Standard sequence invariance can
also be used to test the descriptive (rather than prescriptive)
validity of the QALY model. A tractable way of testing is as
follows. First elicit a Q -standard sequence T0, T1, . . . , Tk through
indifferences

(Q ∗, Tg)p(Q , Ti+1) ∼ (Q ∗, TG)p(Q , Ti)

as in Eq. (4.1), where the new value to be elicited in each
indifference has been printed in bold. Next take a health state

5 The requirements in our observation hold for most theories that are popular
today. These include expected utility for risk (von Neumann & Morgenstern, 1944)
and for uncertainty (Savage, 1954), rank-dependent utility for risk (Quiggin, 1982)
and for uncertainty (Gilboa, 1987; Schmeidler, 1989), prospect theory if there are
only gains (Luce & Fishburn, 1991; Tversky & Kahneman, 1992), disappointment
aversion theory (Gul, 1991), maxmin expected utility (Gilboa & Schmeidler, 1989;
Wald, 1950) and the α-maxmin model (Hurwicz, 1951; Jaffray, 1994), contraction
expected utility (Gajdos, Hayashi, Tallon, & Vergnaud, 2008), and binary rank-
dependent utility (Luce, 2000 Ch. 3; Ghirardato & Marinacci, 2001; Wakker, 2010
Sections 6.11 and 10.6). Observation 5.2 applies to all these theories.
Q ′
≠ Q and a health state Q ∗∗, which can be but need not be

different from Q ∗. Then use a ‘‘bridge’’ question

(Q ∗∗, T ′

g)p(Q
′, T1) ∼ (Q ∗∗, T′

G)p(Q
′, T0)

to find new gauge outcomes (Q ∗∗, T ′
g)

6 and (Q ∗∗, T ′

G) that should
provide the same standard sequence starting with T0 and T1. Then
elicit a second standard sequence T ′

0, T
′

1c, . . . , T
′

k (T ′

0 = T0, T ′

1 =

T1)

(Q ∗∗, T ′

g)p(Q
′, T′

i+1) ∼ (Q ∗∗, T ′

G)p(Q
′, T ′

i ).

We can then test whether the two standard sequences agree, as
required by standard sequence invariance and the QALY model. A
useful spinoff of these measurements is that they directly measure
the utility functions (i.e., discounting) for life duration underQ and
Q ′ (Wakker & Deneffe, 1996). If these are different under Q than
under Q ′ then the QALY model is violated.

The measurements proposed above are chained, with answers
to one question serving as input of next questions. A drawback of
chaining is that errors propagate. Simulation studies for standard
sequences have suggested that the problem of error propagation
is not very serious (Bleichrodt & Pinto, 2000, p. 1495; Abdellaoui,
Vossmann, & Weber, 2005, p. 1394, Section 5.3 end; Bleichrodt,
Cillo, & Diecidue, 2010, p. 164; van de Kuilen & Wakker, 2011).

7. Conclusion

We have demonstrated that standard sequences, a tool com-
monly used in conjoint measurement (where no risk is assumed),
can also be used in multiattribute utility theory (where risk is as-
sumed). They provide convenient tools to characterize and analyze
utility independence, themostwidely used preference condition in
multiattribute utility theory. In particular, they facilitate the study
of the QALY model for health decisions.
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Appendix. Proofs

Proof of Theorem 3.1. That the functional form implies utility
independence follows from substitution. Hence we assume utility
independence, and derive the functional form.

Fix a Q ∗. If the corresponding utility interval U(Q ∗, ·) is
one-point, then by utility independence preference is inde-
pendent of T , V is constant, and everything follows. Hence,
assume that the interval is nonpoint. Then with V (T ) =

U(Q ∗, T ), this function is an interval scale in the represen-
tation (T1, T2) → πV (T1) + (1 − π)V (T2), which means
that it is unique up to level and unit. This uniqueness is
well known if we have an expected utility representation on
the full, nonrank-ordered, product set T 2 (resulting from X2

by keeping Q = Q ∗ fixed), which is a special case of an additive
conjoint representation with Krantz et al.’s (1971) restricted solv-
ability satisfied.7 It is alsowell known if we have a rank-dependent

6 T ′
g ; can but need not be equal to Tg .

7 Here, and in what follows, we have continuity with respect to the product
topology of the order topology generated over T , where the crucial point is that
this topology is connected (it is also topologically separable). The result can be seen
in more elementary terms if we transform all values T into V (T ), giving a weighted
additive representation with linear value functions.
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representation on the full product set T 2 (Wakker, 1991). That it
also holds when restricted to the rank-ordered set T 2

↓
(resulting

from X2
↓
by keeping Q = Q ∗ fixed) as in our setup follows from

Chateauneuf and Wakker (1993, Theorem 2.2 and Lemma C.4).
By utility independence the same preferences hold over pairs

(T1, T2) with Q fixed at every other level Q ′
≠ Q ∗. By interval

scaling,wehaveU(Q ′, T ) = f (Q ′)V (T )+g(Q ′)with f (Q ′)positive.
This way we obtain the functions f and g . �

Proof of Theorem 4.2. If the functional form in the theoremholds,
then all Ts are ordered by V , implying preferential independence.
Further, then all standard sequences are equally spaced in V
units, and theymust be consistent. This implies standard sequence
invariance on T .

In the rest of this proof we assume standard sequence invari-
ance on T . and preferential independence and derive Eq. (4.2).
By preferential independence we can define a preference relation
over T independently of Q , that we will denote <. Thus T < T ′ if
(Q , T ) < (Q , T ′) for some Q , which then holds for all Q .

Take some Q ≠ Q ∗. Define V (T ) = U(Q , T ) and V ∗(T ) =

U(Q ∗, T ). By preferential independence,V andV ∗ both represent<
over T and V ∗

= ϕ ◦V for a strictly increasing ϕ that is continuous
because it maps an interval onto an interval.

Take a T with V (T ) in the interior of V (T ). Hence, T is not max-
imal in T . T will be fixed until the last lines in the proof. Define an
open interval S around V (T ) so small that there is a ‘‘dominating’’
interval D in V (T ) above the interval S large enough to imply, for
all T1 and T0 in V−1(S), existence of Tg and TG in V−1(D) such that

(Q , Tg)E(Q , T1) ∼ (Q , TG)E(Q , T0). (A.1)

In words: each (1− π) weighted V difference in S can be matched
by a π-weighted V difference in D.

We similarly define an open interval S∗ around V ∗(T ) so small
that there is a dominating interval D∗ in V ∗(T ) above the interval
S∗ large enough to imply, for all T1 and T0 in V ∗

−1
(S∗), the existence

of T ∗
g and T ∗

G in V ∗
−1

(D∗) such that

(Q ∗, T ∗

g )E(Q ∗, T1) ∼ (Q ∗, T ∗

G )E(Q ∗, T0). (A.2)

That is, each (1 − π) weighted V ∗ difference in S∗ can be matched
by a π-weighted V ∗ difference in D∗.

Take a T+
≻ T so close to T that both V (T+) ∈ S and V ∗(T+)

∈ S∗. Similarly, take a T−
≺ T so close to T that both V (T−) ∈ S

and V ∗(T−) ∈ S∗. We consider the preference interval {T ′
∈ T :

T−
≺ T ′

≺ T+
} around T and two of its elements T0 ≺ T2. We can

find T1 such that T0, T1, and T2 are equally spaced in V units, and T ∗

1
such that T0, T ∗

1 and T2 are equally spaced in V ∗ units.

Lemma A.1. T1 ∼ T ∗

1 .
Proof. For contradiction, assume T1 ≺ T ∗

1 (the case with ≻ is sim-
ilar and is not discussed). Because the V values of T0, T1, and T2 are
contained in S, there exist Tg and TG in V−1(D) such that, for i = 0:

(Q , Tg)E(Q , Ti+1) ∼ (Q , TG)E(Q , Ti). (A.3)

Because T2 and T1 have the same V difference as T1 and T0, Eq. (A.3)
also holds for i = 1. That is, T0, T1, T2 is a Q -standard sequence.

Because T1 ≺ T ∗

1 , we can find T ∗

2 ≺ T2 such that T0, T1, T ∗

2 are
equally spaced in V ∗ units.

Similar to Eq. (A.3), because the V ∗ values of T0, T1, and T ∗

2 are
contained in S∗, there exist T ∗

g and T ∗

G in V ∗
−1

(D∗) such that

(Q ∗, T ∗

g )E(Q ∗, T1) ∼ (Q ∗, T ∗

G )E(Q ∗, T0) (A.4)

and

(Q ∗, T ∗

g )E(Q ∗, T ∗

2 ) ∼ (Q ∗, T ∗

G )E(Q ∗, T1). (A.5)

Eqs. (A.4) and (A.5) imply that T0, T1, T ∗

2 is aQ ∗-standard sequence.
Because T ∗

2 ≺ T2, a contradiction results with standard sequence
invariance on T . QED
Because T1 ∼ T ∗

1 , T1 (and also T ∗

1 ) is both the V and the V ∗ mid-
point of T0 and T2. Hence, on {T ′

∈ T : T−
≺ T ′

≺ T+
}, V and V ∗

midpoints are the same. With V ∗
= ϕ ◦ V , the continuous func-

tion ϕ satisfies ϕ((v1 + v2)/2) = (ϕ(v1) + ϕ(v2))/2 on the inter-
val (V (T−), V (T+)) around V (T ). It must be affine on this interval
(Aczél, 1966, Section 2.1.3) and have second derivative 0 there, in-
cluding at T .

The continuous and strictly increasing ϕ has second derivative
0 at all T in the interior of its domain V (T ). This implies that it
is affine everywhere. Hence V ∗(T ) = U(Q ∗, T ) = f (Q ∗)V (T ) +

g(Q ∗) for a positive f (Q ∗). This implies Eq. (4.2).

Remark A.2. In this proof, we only used standard sequences in
Eq. (4.1) with Q ∗

= Q . Hence the theorem remains valid if we de-
fine standard sequences only for Q ∗

= Q in Eq. (4.1), and impose
standard sequence invariance only for those standard sequences.
The resulting condition is mathematically interesting because it
is a common weakening of utility independence and standard se-
quence invariance, implying that the resultingmodification of The-
orem 4.2 is an immediate generalization of the theoremswith util-
ity independence in the literature. We chose the stronger version
of standard sequence invariance in our main text because it is em-
pirically more useful (see end of Section 4). �

Proof of Observation 4.3. Substituting the null element in Eq.
(4.2) shows that g(Q ) must be constant. It can be taken 0 because
U is an interval scale. �

Proof of Observation 5.2. Assumeutility independence on a set of
the form X2

↓
. This implies Eq. (3.3) for utility. This, in turn, implies

utility independence on the whole domain of prospects because
changing the deterministic level of some attributes amounts to
an interval rescaling of utility, which does not affect preference.
Utility independence on the whole domain trivially implies utility
independence on the set X2

↓
. Hence Eq. (3.3) and the two versions

of utility independence are equivalent.
Next assume standard sequence invariance on a set of the form

X2
↓
. This implies Eq. (4.2) for utility. This, in turn, implies standard

sequence invariance on every set isomorphic to a set X2
↓
. Hence

Eq. (4.2) and the two versions of standard sequence invariance are
equivalent.

Remark A.3. Although we did not formally define standard se-
quences on larger domains, it can readily be seen that such ver-
sions are easy to obtain. Replacing the deterministic level of some
attributes amounts to an interval rescaling of utility, which does
not alter equal spacedness of utility on, for instance, comonotonic
subsets under rank-dependent utility. �
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