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Abstract

Many empirical studies have shown that people’s preferences are reference-dependent. Previous theoretical studies of reference-

dependence assumed that the reference point was fixed and then imposed the usual assumptions of decision theory, in particular

completeness of preferences. This paper gives preference foundations for additive reference-dependent utility when the reference point

varies across decisions and is one of the options in the decision maker’s opportunity set. This decision situation is common, for example

because usually the retention of the status quo is an available option, but is difficult to handle axiomatically because it implies

incompleteness of preferences. The results of this paper provide tools to extend existing theories of reference-dependent preferences, such

as prospect theory, to new and empirically important decision contexts.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Many empirical studies have shown that people’s
preferences are reference-dependent, i.e. preferences over
final outcomes depend on the reference point from which
they are judged. Such studies include Kahneman and
Tversky (1979) for reference-dependence in decision under
risk, Kahneman, Knetsch, and Thaler (1990) for choice
among commodity bundles, Loewenstein and Prelec (1992)
for intertemporal choice, Dolan and Robinson (2001) for
welfare theory, Bateman, Munro, Rhodes, Starmer, and
Sugden (1997) for contingent valuation, and Bleichrodt
and Pinto (2002) for multiattribute utility. To explain the
commonly observed preference patterns, the reference
point needs to shift across decision situations (Wakker,
2005, Observation 4.4 and Theorem 4.5). If the reference
point is fixed then a simple rescaling of utility makes
reference-dependent utility equivalent to the standard
theory of choice. Tversky and Kahneman (1991) analyze
how shifts in the reference point can account for violations
of standard models of consumer theory and Bateman et al.
e front matter r 2007 Elsevier Inc. All rights reserved.
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(1997) show how shifts in the reference point can explain
the difference between willingness to pay and willingness to
accept valuations.
The following example from medical decision making

illustrates the importance of shifts in the reference point to
explain observed empirical data. A widely used method to
measure the utility of impaired health is to ask people how
much of their remaining life duration they are willing to
give up for an improvement in health. Suppose that a
patient has 40 more years to live with rheumatoid arthritis
and that we ask this patient how many years in full health
he considers equivalent to 40 years with rheumatoid
arthritis. Let the patient’s answer be 30 years. Several
studies have observed that if we tell this patient instead that
he has 30 more years to live in full health and ask him how
many years with rheumatoid arthritis he considers equiva-
lent to 30 years in full health, the patient typically states a
number exceeding 40 years (e.g. Bleichrodt, Pinto, &
Abellan-Perpiñan, 2003; Spencer, 2003). When the refer-
ence point is fixed such preferences cannot occur because
transitivity of the reference-dependent preference rela-
tion implies that in both decisions we should observe the
same indifference. However, when the reference point
shifts from 40 years with rheumatoid arthritis in the first
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1Some authors distinguish between revealed and psychological prefer-

ences (e.g. Mandler, 2005). I do not make this distinction. As is common

in economics and decision theory, this paper derives preferences from

binary choice.
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decision to 30 years in full health in the second decision
then such preferences can be accommodated by loss
aversion.

Previous theoretical analyses of reference-dependence
took the reference point as fixed and then applied the
common axioms of decision theory, such as transitivity and
completeness, to the reference-dependent preference rela-
tion (Köbberling & Wakker, 2003; Luce & Fishburn, 1991;
Sugden, 2003; Tversky & Kahneman, 1991, 1992; Wakker
& Tversky, 1993; Zank, 2001). This approach is somewhat
unsatisfactory because, as explained above, reference-
dependence can only explain the observed empirical
regularities when the reference point shifts across decision
contexts. A notable exception is Schmidt (2003), who
analyzed shifts in the reference point. Schmidt (2003) also
imposed the common assumptions of decision theory, in
particular completeness of reference-dependent prefer-
ences.

Because reference-dependence is a relatively new concept
it entails new difficulties for theoretical studies of reference-
dependence. One of these difficulties, incompleteness of
preferences, is the topic of the present paper. I will argue
that completeness of preferences is often not plausible
when preferences are reference-dependent and that new
preference foundations need to be developed that allow for
incomplete preferences. The problem of incompleteness
arises when the reference point is always one of the
available options in the decision maker’s opportunity set.
This often happens, because in many decision situations
the reference point is the status quo and retention of the
status quo is always possible. Sometimes a status quo is not
readily available, for example when the choice is between
two treatments for a particular disease both involving
health states the decision maker is unfamiliar with. In such
situations the decision maker often takes one of the
alternatives as his reference point (Robinson, Loomes, &
Jones-Lee, 2001).

One example where a decision maker takes one of the
alternatives in his opportunity set as his reference point was
given above for health utility measurement. Empirical
evidence shows that when people are asked how much of
their remaining life duration they are willing to give up for
an improvement in their health, they handle such tasks by
taking the alternative impaired health for the rest of their
life as their reference point and by trading off the gain in
health quality and the loss in life duration. As another
illustration, Hershey and Schoemaker (1985) observed that
when people compare a sure amount of money with a risky
prospect, they take the sure amount as their reference point
and evaluate the outcomes of the risky prospect as gains
and losses relative to this sure amount (see also Bleichrodt,
Pinto, & Wakker, 2001; Johnson & Schkade, 1989;
Morrison, 2000; Robinson et al., 2001; Stalmeier &
Bezembinder, 1999). Perhaps it is worth mentioning here
that I do not claim that the reference point is in each
decision context part of the decision maker’s opportunity
set. My point is that there are decision contexts of
considerable interest for which this is the case and, hence,
that this case is important to explore.
If the reference point is always in the decision maker’s

opportunity set then the preference relation can no longer
be taken as complete. To see this point consider two
alternatives x and y that are both worse than a reference
point r, which is also in the decision maker’s opportunity
set. Then the decision maker will always choose r over x

and y and, hence, will never choose between x and y given
reference point r. For example, take a decision maker who
considers a choice between jobs, where r is his current job
in which he earns h 80K per year and has 20min travel time
per day, x is a job in which he earns h 50K per year and has
30min travel time per day and y is a job in which he earns h
60K per year and has 60min travel time per day. Because
retaining his current job is an option for the decision maker
he will always choose r over x and y and we cannot observe
the decision maker’s choice between x and y. The decision
maker’s choices are the primitive of utility theory and it is
only by observing a decision maker’s choices that his
preferences can be inferred.1 Consequently, a preference
between x and y judged from r cannot be inferred and
the reference-dependent preference relation with r as the
reference point must be taken incomplete. Note that the
inclusion of the reference alternative r in the deci-
sion maker’s opportunity set is crucial in the above
argument.
Because the available characterizations of reference-

dependent utility models all take reference-dependent
preferences complete, they do not cover the case where
the reference point is always one of the elements in the
decision maker’s opportunity set. New preference founda-
tions must be developed to cover this empirically important
case and this is the topic of this paper. The paper presents a
preference foundation for reference-dependent utility when
the reference point can vary and is one of the alternatives in
the decision maker’s opportunity set. This means that I
have to take reference-dependent preferences over alter-
natives as incomplete. I will present a preference founda-
tion for a general additive model, which underlies all the
reference-dependent utility models that have been pro-
posed in the literature. By imposing additional conditions
on this general model, preference foundations for more
specific cases of reference-dependent utility can be given.
Hence, this paper provides the tools to characterize, for
example, Tversky and Kahneman’s (1991) model of
constant loss aversion in consumer theory and Loewenstein
and Prelec’s (1992) general hyperbolic discounting model in
intertemporal choice and to extend prospect theory,
currently the main descriptive theory of decision under
uncertainty, to the case of reference-dependence considered
here.
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The type of incompleteness considered implies that an
additive representation of binary preferences will be
derived on a subset of a Cartesian product, being a subset
where the preference relation is complete. A common
misunderstanding in the literature is that additive repre-
sentation theory on subsets of Cartesian products does not
differ from additive representation theory on full Cartesian
products. That this is not so, and that the restriction of
representation theorems to subsets is usually complex, has
been pointed out by Falmagne (1981), Fishburn (1970,
p. 74), Krantz, Luce, Suppes, and Tversky (1971, p. 276),
Shapiro (1979) and Wakker (1989, Remark III.7.8).
Wakker (1993) cited many misunderstandings about the
nontrivial nature of extensions to subsets from economics,
psychology, operations research, and functional equations
and, in a complex analysis, demonstrated how additive
conjoint measurement can be extended to the special class
of subsets that are comonotonic cones.2 Even though such
cones are well-behaved subsets, connected with full-
dimensional interior, the extra complexities are already
large there.

There has recently been a revived interest in incomplete
preference relations (Dubra, Maccheroni, & Ok, 2004;
Eliaz & Ok, 2006; Girotto & Holzer, 2005; Maccheroni,
2004; Mandler, 2005; Masatlioglu & Ok, 2005; Ok, 2002,
earlier contributions are Aumann, 1962; Bewley, 1986;
Vind, 1991). The type of incompleteness that these studies
examined stemmed from indecisiveness, confusion, and
lack of information of the decision maker. This paper
provides another argument why studying incomplete
preferences is important, namely reference-dependence.
Reference-dependence requires a different form of incom-
pleteness than studied in the abovementioned works.
Consequently, the methods, results, and fields of applica-
tion of the present paper are different. The paper that is
closest to this paper is Vind (1991) who also studied general
additive utility, but did not consider reference-dependence.

In what follows, Section 2 explains notation and
assumptions, Section 3 gives the main results of this paper
and Section 4 concludes. All proofs are in the Appendix.

2. Notation and assumptions

2.1. Notation

Let n42. Let X 1; . . . ;X n be nonempty sets. Alternatives

are elements of X ¼ X 1 � � � � � X n, and are denoted as
x ¼ ðx1; . . . ;xnÞ. Examples of alternatives are acts in
decision under uncertainty, commodity bundles in con-
sumer theory, multiattribute outcomes, time streams, and
income distributions. Let ajx denote the alternative x with
xj replaced by aj 2 X j, and aibjx the alternative x with xi

replaced by ai 2 X i and xj replaced by bj 2 X j, iaj.
Let r 2 X denote a reference alternative. Each alternative

can serve as a reference alternative. Let F be the collection
2For a definition of comonotonic cones see Wakker (1993).
of all nonempty finite subsets of 2X , i.e. F includes all
singleton sets and is union-closed. F may be interpreted as
the set of all choice problems and any element A of F is an
opportunity set. For every reference alternative r, we define
Fr ¼ fA 2F : r 2 Ag. A choice function cr is a mapping
from Fr to F such that for all A 2Fr, ;acrðAÞ � A.
Given an opportunity set A 2Fr, the choice function
specifies the alternatives that the decision maker is willing
to choose from A. We derive a preference relation kr on X

from cr in the following manner, where xkry means ‘‘x is
weakly preferred to y when judged from reference
alternative r.’’ We write
(1)
 xkry if there is a A 2Fr such that x 2 crðAÞ and y 2 A.

(2)
 x�ry if there is a A 2Fr such that x 2 crðAÞ and

y 2 AncrðAÞ.

(3)
 x�ry if there is a A 2Fr such that x 2 crðAÞ and

y 2 crðAÞ.
We assume that the choice functions cr satisfy the weak

axiom of revealed preference, i.e. for all alternatives x, y, if
xkry then not y�rx. This ensures that for all r the
preference relation kr is transitive and represents the
choice function cr: for all A 2Fr, crðAÞ ¼ fx 2 A : xkry

for all y 2 Ag (Wakker, 1989, Theorem I.2.5). I will denote
by %r and �r the reversed binary relations.

2.2. Preference conditions

The preference relation kr need not be complete. In
particular, if two alternatives x and y are both strictly less
preferred than r, then the preference between x and y

judged from r cannot be observed, because in that case
crðfx; y; rgÞ ¼ frg. On the other hand, if at least one of x and
y is at least as good as r then a preference between x and y

judged from r can be observed. Hence, I consider a special
type of incompleteness: loosely speaking, ‘‘above’’ the
reference alternative, preferences are complete, but ‘‘be-
low’’ the reference alternative they do not exist. Let us now
formalize the above discussion.

Definition 2.1. For a given alternative r, r-upper complete-

ness holds if (i) r�rr and (ii) for all x; y 2 X , if xkrr or
ykrr, then either xkry or ykrx; if r�rx and r�ry then
neither xkry nor ykrx.

Completeness of preferences above the reference alter-
native may be too strong. Indecisiveness of the decision
maker may, for example, lead to some incompleteness of
preferences above the reference alternative. I do not
consider such incompleteness. To handle it, tools like those
in Ok (2002) and Dubra et al. (2004) may have to be
combined with the tools presented in this paper.
For r 2 X , let Br ¼ fðx; yÞ 2 X � X : xkrr or ykrrg.

That is, Br is the set of pairs of alternatives for which,
judged from r, a preference can be observed. Coordinate j

is essential with respect to r if there exist ðajx; xÞ 2 Br such
that ajx�rx. I will need the assumption that there exist at



ARTICLE IN PRESS
H. Bleichrodt / Journal of Mathematical Psychology 51 (2007) 266–276 269
least three coordinates that are essential with respect to r.
For convenience, I will assume throughout that for all r, all
coordinates are essential with respect to r.

Suppose that the preference relations kr satisfy weak

separability (Wakker, 1989) i.e. for all alternatives x; y; v;w; r
and for all coordinates j, if ðxjv; yjvÞ; ðxjw; yjwÞ 2 Br then
xjvkryjv iff xjwkryjw. In other words, if xjvkryjv then
changing the n� 1 common coordinates vi into
wi; i ¼ 1; . . . ; j � 1; j þ 1; . . . ; n, such that ðxjw; yjwÞ 2 Br

does not change reference-dependent preferences. On each
X j a weak order kj;r can be defined. For all j; aj, bj 2 X j ,
write ajkj;rbj if there exist alternatives v and r such that
ajvkrbjv. By weak separability the kj;r relations do not
depend on v. Thekj;r relations define preference relations on
the coordinates. It will follow from solvability (see Definition
2.3) that thekj;r relations are weak orders. It is assumed that
the kj;r relations are reference-independent: for all j, aj ;bj 2

X j and for all reference alternatives r and r0; ajkj;rbj iff
ajkj;r0bj . Hence, I will write kj for the preference relations
on the coordinates in what follows. For the �j relations the
notations kj , etc. are used, similar to those for kr.

In our setup thekj relations are derived fromkr by weak
separability. An alternative approach would be to take the
kj relations as primitive and to require that the overall
relationkr satisfies monotonicity with respect to the kj’s. It
can be seen that taking the kj relations as primitive and
imposing monotonicity is equivalent to deriving the kj

relations from kr by weak separability as above.

Definition 2.2. Weak monotonicity holds if for all
ðx; yÞ 2 Br, xjkjyj for all coordinates j implies xkry.

In other words, if the pair ðx; yÞ belongs to Br and if
alternative x gives for each coordinate an outcome that is
at least as good as the outcome given by alternative y then
weak monotonicity entails that x is at least as preferred as y

when judged from r.

Definition 2.3. Solvability holds if for all alternatives x; y; r,
with ykrr and for all coordinates j there exists a
consequence aj such that ajx�ry.

Solvability is a rather strong condition, which will imply
unboundedness of utility. It would be desirable to replace
solvability by a restricted version as in Krantz et al. (1971,
Definition 12, p. 301). I am pretty sure that this can be
done, but the problems involved are quite difficult, would
probably require additional axioms, and would make the
already long and complicated proofs of the main results
even longer and more complicated. I will not pursue this
topic in this paper.

2.3. Tradeoff consistency

I next define a new relation �	r;j, which is central in the
preference foundations given below. For a coordinate j and
consequences aj, bj, gj, dj 2 X j , write

ajbj�
	
r;jgjdj
if there exist alternatives x; y; r 2 X such that

ajx�rbjy and gjx�rdjy.

The interpretation of the �	r;j relation is that, judged from

rj, receiving aj instead of bj is an equally good improve-

ment as receiving gj instead of dj: both exactly offset the

receipt of the yis instead of the xis. Loosely speaking, we
may interpret the �	r;j relations as measuring strength of

preference. Note, however, that the �	r;j relations are

defined in terms of �r and do not require the introduction
of new primitives. In terms of the additive representations
derived below ajbj�

	
r;jgjdj implies that Vjðaj ; rjÞ � V jðbj ; rjÞ

¼ V jðgj ; rjÞ � Vjðdj ; rjÞ where V j is a utility function on

attribute j that represents kj. More detailed discussions of

relationships similar to the �	r;j relations can be found in

Wakker (1989) and in Köbberling and Wakker (2003,
2004). For the interpretation of the �	r;j relation as strength

of preference relations to make sense we must introduce a
consistency condition. The next definition presents this
consistency condition.

Definition 2.4. Tradeoff consistency holds if improving an
outcome in any �	r;j relationship breaks that relationship.

For instance, if ajbj�
	
r;jgjdj and ajbj�

	
r;jgjd

0
j both hold then

tradeoff consistency implies that dj�jd
0
j.

The intuition behind tradeoff consistency is that if
judged from rj , receiving aj instead of bj is an equally good

improvement as receiving gj instead of dj and also receiving

aj instead of bj is an equally good improvement as receiving

gj instead of d0j then dj and d0j must be equally good.

Tradeoff consistency is a central condition in what follows
and will ensure that the relations kr have additive
representations. An important advantage of using tradeoff
consistency as a condition in preference foundations,
besides its intuitive appeal, is that it is easily tested
empirically. Measurements of utility by the tradeoff
method (Wakker & Deneffe, 1996) provide direct tests of
tradeoff consistency. The tradeoff method measures
standard sequences of outcomes. Inspection of different
standard sequences provides information whether tradeoff
consistency is satisfied. Suppose for example that we have
observed that ajx�rbjy and gjx�rdjy. Then we can use

gauge outcomes x0 and y0, which are different from x and y,

such that ajx
0�rbjy

0 and gjx
0�rd

0
jy
0. A comparison between

dj and d0j yields a test of tradeoff consistency. Many

empirical studies have used the tradeoff method to measure
utility and to test the validity of decision models in
different decision contexts, showing that such measure-
ments are feasible and easily performed (e.g. Abdellaoui,
2000; Abdellaoui, Vossmann, & Weber, 2005; Bleichrodt &
Pinto, 2000, 2005; Etchart-Vincent, 2004; Fennema & van
Assen, 1998).
Finally, some technical assumptions are introduced.

Consider the order topologies on the X j, which are



ARTICLE IN PRESS
H. Bleichrodt / Journal of Mathematical Psychology 51 (2007) 266–276270
generated by the sets fyj 2 X j : yj�jxjg and fyj 2 X j :
yj�jxjg, where xj 2 X j. X is endowed with the product
topology.

Definition 2.5. Preference continuity holds if for all alter-
natives x and r, the sets fy 2 X : ykrxg and fy 2 X : y%rxg

are closed in X.

Functions Vj ; j ¼ 1; . . . ; n, are joint ratio scales if they
can be replaced by functions W j ; j ¼ 1; . . . ; n, if and only if
there exists a positive s such that W j ¼ sV j for all j.

3. Results

3.1. One fixed reference point

I first derive an additive representation for a given
reference alternative. This case is considered separately,
because it is the case most commonly encountered in
theoretical analyses of reference-dependence and there are
decision situations in which it is descriptively realistic, in
particular when retention of the status quo is an option.
For example, in a comparison between risky assets, ‘‘do
nothing’’, i.e. zero gain and zero loss, may be a plausible
reference point.

Theorem 3.1. Consider a given reference alternative r 2 X .
Let there be at least three coordinates, which are all essential

with respect to r. The following two statements are equivalent

for kr:
1.
 The order topologies on X j are connected, kr is transitive

and satisfies r-upper completeness, weak monotonicity,
solvability, preference continuity, and tradeoff consis-

tency.

2.
 There exist functions V j : X j ! R such that:

(a) ðx; yÞ 2 Br iff
Pn

j¼1V jðxjÞX0 or
Pn

j¼1V jðyjÞX0;
(b) for all ðx; yÞ 2 Br, xkry iff

Pn
j¼1V jðxjÞX

Pn
j¼1V jðyjÞ;

(c) VjðrjÞ ¼ 0 for all j;
(d) for all j 2 f1; . . . ; ng, V j represents kj: for all

xj ; yj 2 X j, V jðxjÞXV jðyjÞ iff xjkjyj;
(e) the V j are continuous and their range is R.
Furthermore, the V j are joint ratio scales.

In terms of the choice function cr, part 2 of Theorem 3.1
can be summarized as for all A 2Fr, crðAÞ ¼ arg maxx2A

f
Pn

j¼1VjðxjÞg with the V j as defined in Theorem 3.1.

3.2. Variable reference points

The Vj in Theorem 3.1 obviously depend on the given
reference alternative r. I will now consider the case where
the reference alternative can vary. As mentioned before,
this case is important for reference-dependent theories to
be able to explain empirical regularities. Because we
now consider variable reference points, the VjðxjÞ in
Theorem 3.1. will be replaced by V j;rðxj ; rjÞ to make
explicit the dependency on the reference alternative.
Without further restrictions the functions Vj;r are too
general to be tractable. Intuitively it seems plausible that
when two different reference alternatives r and r0 yield the
same outcome for some coordinate j, i.e. rj ¼ r0j, then the
functions V j;r and Vj;r0 are identical, V j;rðxjÞ ¼ V j;r0 ðxjÞ ¼

VjðxjÞ for all xj. This alignment of the different reference-
dependent representations greatly facilitates the elicitation
of the model and, hence, I will derive the following
representation.

Definition 3.1. General reference-dependent utility (GRU)
holds if there exist functions Vj : X j � X j ! R such that
(a)
 ðx; yÞ 2 Br iff
Pn

j¼1Vjðxj ; rjÞX0 or
Pn

j¼1V jðyj ; rjÞX0.P P

(b)
 For all ðx; yÞ 2 Br, xkry iff n

j¼1Vjðxj ; rjÞX
n
j¼1

V jðyj ; rjÞ.

(c)
 V jðrj ; rjÞ ¼ 0 for all j.

(d)
 For all j 2 f1; . . . ; ng, V j is increasing in its first

argument (i.e. V j represents kj): for all xj , yj 2 X j,
V jðxj ; rjÞXVjðyj ; rjÞ iff xjkjyj.
(e)
 For all j 2 f1; . . . ; ng, V j is decreasing in its second
argument: for all xj , yj , zj 2 X j , V jðxj ; zjÞXVjðxj ; yjÞ iff
zj%jyj.
(f)
 The V j are continuous in their first argument and their
range is R.
Furthermore, the Vj are joint ratio scales.

In terms of the choice function cr, GRU amounts to for
all A 2Fr, crðAÞ ¼ arg maxx2A f

Pn
j¼1V jðxj ; rjÞg with the V j

as defined in Definition 3.1.
To derive GRU some new definitions must be intro-

duced. The first definition extends r-upper completeness to
all reference alternatives r.

Definition 3.2. Upper completeness holds if r-upper com-
pleteness holds for all r.

The functions V jðxj ; rjÞ are increasing in xj. It also makes
sense that the functions V j are decreasing in their second
argument, the reference level rj. The less attractive the
reference level rj, the more attractive appear all other
alternatives relative to the reference alternative. The
following condition formalizes this intuition.

Definition 3.3. Reference monotonicity holds when for all
alternatives x and r and for all outcomes aj , bj, gj 2 X j,
bj%jgj iff ajx�gj rgjr implies ajxkbj r

bjr.

The next condition is central in the derivation of
Theorem 3.2, because it implies that functions V jðxj ; rjÞ

can be chosen identical for different reference alternatives r

and r0 for which rj ¼ r0j.

Definition 3.4. Neutral independence holds if for all aj, bj 2

X j and for all alternatives x; y; r, ajx�aj rajy implies
bjx�bj rbjy.



ARTICLE IN PRESS
H. Bleichrodt / Journal of Mathematical Psychology 51 (2007) 266–276 271
In other words, neutral independence says that an
indifference with all j-coordinates, both of the alternatives
compared and of the reference alternative, being the same
is not affected if this common coordinate is changed. An
example may illustrate. Consider a medical decision
problem where a patient has symptoms that indicate one
of three possible states of the world: either he has disease A
or he has disease B or he has disease C. The reference
treatment means that he lives 8 more years if he turns out
to have disease A, 10 more years if he turns out to have
disease B, and 2 more years if he turns out to have disease
C, denoted (8,10,2). There exist two alternative treatments,
treatment 1 gives (8,8,4) and treatment 2 gives (8,6,6).
Suppose that the patient prefers both treatments to the
reference treatment and is indifferent between treatments 1
and 2. Then neutral independence says that he should also
be indifferent between (10,8,4) and (10,6,6) if the reference
treatment is (10,10,2) because these new treatments result
from the original ones by replacing the common outcome 8
years under disease A by the new common outcome 10
years under disease A.

We are now in a position to state the extension of
Theorem 3.1 to fkr : r 2 X g, i.e. the case where the
reference point can vary. Theorem 3.2 is the central result
of this paper.

Theorem 3.2. Let there be at least three coordinates, which

are all essential with respect to every r 2 X . The following

two statements are equivalent for fkr : r 2 X g:
1.
 The order topologies on X j are connected, kr is transitive

and satisfies upper completeness, weak monotonicity,
solvability, preference continuity, tradeoff consistency,
reference monotonicity, and neutral independence.
2.
 GRU holds.

4. Conclusion

The central point of this paper is that there are
important decision contexts in which the reference alter-
native is part of the decision maker’s opportunity set and
that reference-dependent preference relations must be
incomplete in such decision contexts. The paper has
derived additive representations for such incomplete
preference relations. The main model of this paper,
GRU, can be used as a building block for more specific
reference-dependent utility models such as prospect theory
by imposing additional assumptions. Pursuing such exten-
sions is, however, beyond the scope of this paper.

Reference-dependence is an important explanation for
deviations from the standard models of decision theory.
This paper has shown that reference-dependence also
creates new theoretical problems. By addressing one of
these problems, the fact that reference-dependence often
leads to incompleteness of preference data, I hope that this
paper has contributed to the applicability of the concept of
reference-dependence.
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Appendix A
Proof of Theorem 3.1. First assume that statement (2) of
Theorem 3.1 holds. For all j, the set of �j equivalence
classes of X j is homeomorphic to the range of V j, hence it
is connected. If xkry and ykrz then by parts (a) and (c)
and the definition of Br, ðx; zÞ 2 Br and by part (b) xkrz,
which establishes transitivity. r-Upper completeness fol-
lows from parts (a) and (c). For ðx; yÞ 2 Br, if xjkjyj for all
j, then because the Vj represent preferences over outcomes,
VjðxjÞXVjðyjÞ for all j and thus

Pn
j¼1V jðxjÞX

Pn
j¼1V jðyjÞ.

Because ðx; yÞ 2 Br, part (b) implies that xkry and thus
weak monotonicity follows. Solvability holds because
VjðX jÞ ¼ R for all j.

Continuity of the V j implies continuity of
Pn

j¼1VjðxjÞ.
Suppose r�rx. Then fy 2 X : y%rxg ¼ ;, which is closed.
Because V ¼

Pn
j¼1V jðxjÞ is continuous, the inverse of V of

the closed subset ½0;!Þ in R is closed. This inverse is
fy 2 X : ykrrg. If x�rr and V ðxÞ ¼

Pn
j¼1VjðxjÞ ¼ c40,

then by continuity of V, the inverses of V of the closed
subsets ½0; c
 and ½c;!Þ in R are both closed. These inverses
are fy 2 X : y%rxg and fy 2 X : ykrxg. Preference con-
tinuity follows.
Finally, tradeoff consistency is established. If ajbj�

	
r;jgjdj

then there exist alternatives x,y such that ajx�rbjy and

gjx�rdjy. Hence, VjðajÞþ
P

iajV iðxiÞ¼V jðbjÞ þ
P

iajV iðyiÞ

and VjðgjÞ þ
P

iajV iðxiÞ ¼ V jðdjÞ þ
P

iajV iðyiÞ, which

gives VjðajÞ � VjðbjÞ ¼ V jðgjÞ � V jðdjÞ. The relation

ajbj�
	
r;jgjd

0
j implies that there exist alternatives x0, y0 such

that ajx
0�rbjy

0 and gjx�rd
0
jy. Hence, by a similar reasoning

as above, VjðajÞ � VjðbjÞ ¼ V jðgjÞ � Vjðd
0
jÞ. Therefore,

VjðdjÞ ¼ V jðd
0
jÞ, and because the Vj represent preferences

over outcomes, it follows that dj�d
0
j. Statement (1) has

been derived.
Next assume that statement (1) of Theorem 3.1 holds.

Let r 2 X . The preference relation satisfies strong mono-

tonicity if for all ðx; yÞ 2 Br, for all coordinates j, xjkjyj

and for at least one coordinate i, xi�iyi then x�ry. It is
easily verified that strong monotonicity implies weak
separability.

Lemma 1. If kr satisfies transitivity, r-upper completeness,
and weak monotonicity, then tradeoff consistency implies

strong monotonicity.
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Proof. Let ðx; yÞ 2 Br be such that for all coordinates j,
xjkjyj and for at least one i, xi�iyi. If xkrr and r�ry then

the result follows by transitivity. So let ykrr. By weak
monotonicity and r-upper completeness, xkry. Define
x0 ¼ ðx1; . . . ;xi; yiþ1; . . . :; ynÞ. By weak monotonicity,

xkrx
0
krðyiÞix

0
kry. By transitivity it suffices to show that

x0�rðyiÞix
0. Suppose that x0 ¼ ðxiÞix

0�rðyiÞix
0. By r-upper

completeness,ðxiÞix
0�rðxiÞix

0 and, thus, xiyi�
	
r;jxixi. The

indifferences ðxiÞix
0�rðxiÞix

0 and ðxiÞix
0�rðxiÞix

0 imply that
xixi�

	
r;jxixi. Tradeoff consistency implies that yi�ixi, which

contradicts the assumed xi�iyi. &

Lemma 2. Let ajykrr, bjykrr. Then ajxkrajy iff bjxkrbjy.

Proof. Let ajykrr, bjykrr and let ajxkrajy. Because n42,
there exists, by solvability, a gi 2 X i, iaj, such that
ajx�rgiajy. By strong monotonicity, gikiyi and gibjykrr.
From giajy�rgiajy and gibjy�rgibjy, we obtain ajaj�

	
r;jbjbj .

Tradeoff consistency and ajx�rgiajy imply bjx�rgibjy.
Transitivity and weak monotonicity imply bjxkrbjy. &

Next I derive additive representations on the subset
X 2 � � � � � X n, using tools from the proof of Theorem 2.1
in Gilboa, Schmeidler, and Wakker (2002). Start by
making the kj antisymmetric, i.e., if aj�jbj then aj ¼ bj .
For aj 2 X j, let ½aj
 ¼ fbj 2 X j : bj�jajg denote the �j-
indifference class of aj. For any alternative x, ½x
 ¼ ð½x1
;
. . . ; ½xn
Þ. Let ½X j 
 denote the set of indifference classes in
X j . All assumptions made remain valid if ½X j
 is
considered. Henceforth, aj is written instead of ½aj
 and it
is assumed that every indifference class in X j, j ¼ 1; . . . ; n,
contains exactly one element. The proof of the theorem for
this modified structure implies the proof for the original
structure.

Because for any y, the set fx 2 X : x�ryg is the inter-
section of the sets fx 2 X : xkryg and fx 2 X : x%ryg, the
set fx 2 X : x�ryg is closed. For each x0 in X 2 � � � � � X n,
there exists, by solvability, an a1 such that ða1;x0Þ ¼
ða1;x2; . . . :; xnÞ�rr. By strong monotonicity and antisym-
metry, a1 is unique and thus the map V from X 2 � � � � � X n

to X 1 which assigns to each x0 in X 2 � � � � � X n the a1 such
that ða1;x0Þ�rr is well-defined. V defines a binary relation
k
ð1Þ on X 2 � � � � � X n defined by: for all x0, y0 2 X 2

� � � � � X n, x0kð1Þy0 iff V ðx0Þ%1V ðy0Þ. The relations �ð1Þ,
�ð1Þ, %ð1Þ, and �ð1Þ are defined as usual. Because k1 on X 1

is complete and transitive, kð1Þ is complete and transitive.
Let ajx

0 denote the ðn� 1Þ-tuple x0 with xj replaced by aj ,
j ¼ 2; . . . ; n.

Lemma 3. k
ð1Þ satisfies strong monotonicity: for all

j 2 f2; . . . ; ng, if aj�jbj then ajx
0�ð1Þbjx

0.

Proof. Suppose that ðg1; ajx
0Þ�rðd1;bjx

0Þ�rr with aj�jbj. It
immediately follows from Lemma 1 that g1�1d1 and, thus,
that ajx

0�ð1Þbjx
0. &

Lemma 4. V is continuous.

Proof. Let a1 2 X 1. The set fb1 2 X 1 : b1�1a1g is open in
the order topology on X 1. Consider the set V�1fb1 2 X 1 :
b1�1a1g, and let ðx2; . . . ;xnÞ be an element thereof. Then
ðg1;x2; . . . ;xnÞ�rr for some g1�1a1, and, by strong mono-
tonicity, ðg1;x2; . . . ;xnÞ�rða1;x2; . . . ;xnÞ. An element xj 2

X j is maximal if for all yj 2 X j, xjkjyj. By solvability, there
exists a yj such that (a1; x2; . . . ;xj�1; yj ;xj ; . . . ;xnÞ�rr. By
strong monotonicity, yj�jxj. Hence, none of the xj is
maximal. By preference continuity and connectedness,
there is an x02�2x2 such that still r�r ða1;x02;x3; . . . ;xnÞ.
Similarly, by preference continuity and connectedness,
there is an x03�3x3 such that still r�rða1;x02;x

0
3; . . . ;xnÞ. We

end up with an inductively defined neighborhood of
ðx2; . . . ;xnÞ in V�1fb1 2 X 1 : b1�1a1g of the form B2 �

� � � � Bn where for each j, Bj ¼ fdj 2 X j : dj�jx
0
jg for an

x0j�jxj . For every element of V�1fb1 2 X 1 : b1�1a1g a
neighborhood within V�1fb1 2 X 1 : b1�1a1g can be con-
structed, so that the latter set must be open for each a1.
Similarly, V�1fb1 2 X 1 : b1�1a1g is open for each a1.
Continuity of V follows. &

From Lemma 4 it immediately follows that k
ð1Þ is

continuous.
The relation k

ð1Þ satisfies the generalized Reidemeister

condition if for any coordinate j 2 f2; . . . ; ng, ajx
0�ð1Þgjy

0,
bjx
0�ð1Þdjy

0, and ajv
0�ð1Þgjw

0 imply bjv
0�ð1Þdjw

0.

Lemma 5. k
ð1Þ satisfies the generalized Reidemeister con-

dition.

Proof. Let j 2 f2; . . . ; ng and let ajx
0�ð1Þgjy

0, bjx
0�ð1Þdjy

0,

and ajv
0�ð1Þgjw

0. The three �ð1Þ indifferences imply by

antisymmetry that there exist consequences s1, t1, and m1
such that ðs1; ajx

0Þ�rðs1; gjy
0Þ�rðt1;bjx

0Þ�rðt1; djy
0Þ�r

ðm1; ajv
0Þ�rðm1; gjw

0Þ�rr. For i ¼ 2; . . . ; n, iaj, define z0i ¼

x0i if x0ikiy
0
i and z0i ¼ y0i if y0i�ix

0
i, z0j ¼ aj if ajkjbj and z0j ¼

bj if bj�jaj and let z0 ¼ ðz02; . . . ; z
0
nÞ. By Lemma 2 and strong

monotonicity, ðs1; ajz
0Þ�rðt1; bjz

0Þkrr and ðs1; gjz
0Þ�r

ðt1; djz
0Þkrr. This means that ajbj�

	
r;jgjdj. By solvability,

z1 and d0j can be found such that ðz1; bjv
0Þ�rðz1; d

0
jw
0Þ�rr.

For i ¼ 2; . . . ; n, iaj, define z00i ¼ v0i if v0ikiw
0
i and z00i ¼ w0i if

w0i�iv
0
i, z00j ¼ aj if ajkjbj and z00j ¼ bj if bj�jaj, and let

z00 ¼ ðz002 ; . . . ; z
00
nÞ. By Lemma 2 and strong monotonicity,

ðm1; ajz
0Þ�rðz1; bjz

0Þkrr and ðm1; gjz
0Þ�rðz1; d

0
jz
0Þkrr. Hence,

ajbj�
	
r;jgjd

0
j. By tradeoff consistency, dj�jd

0
j, and by anti-

symmetry dj ¼ d0j. Hence, ðz1; djw
0Þ�rr and bjv

0�ð1Þ

djw
0. &

Lemma 6. There exist continuous functions V 1
j : X j ! R,

j ¼ 2; . . . ; n, such that kð1Þ is represented by
Pn

j¼2V
1
j ðxjÞ and

V1
j ðrjÞ ¼ 0 for all j. The V1

j ’s are joint ratio scales that

represent the kj relations.

Proof. This follows from Lemma 6 in Gilboa et al. (2002),
who used several results from Wakker (1989). The only
difference is that now V 1

j ðrjÞ ¼ 0 for all j. &

The superscript 1 in V 1
j serves as a reminder that the first

coordinate was used to define the preference relation k
ð1Þ.

Any other coordinate i; i 2 f2; . . . ; ng could also have been
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used to define a preference relation k
ðiÞ over

Q
ja1X j. By

the above argument there exists a representation
Pn

ja1V
i
j ,

with V i
jðrjÞ ¼ 0 for all jai, for kðiÞ. I will now demonstrate

that for each given j the V i
j can be chosen identical for

different i.
Define induced preference relations kðAÞ on subsets A of
f1; . . . ; ng by keeping outcomes for coordinates not in A

fixed. By repeated application of Lemma 2, the kðAÞ, when
defined, do not depend on the level at which the outcomes
for coordinates not in A are kept fixed.

Lemma 7. Let the Vi
j : X j ! R, i; j ¼ 1; . . . ; n, iaj, be as

defined above. Then every Vi
j can be chosen identical to every

other V k
j , k ¼ 1; . . . ; n, kai; j.

Proof. First assume n ¼ 3. Let i; j, and k be distinct
coordinates. First it is shown that for each given j the Vi

j

can be chosen proportional for different i. Let aj, bj, and gj

be arbitrary outcomes in X j with aj�jgj. By solvability,
there exists an x 2 X such that rigjx�rr. By strong
monotonicity (Lemma 1), riajx�rr. By solvability, there
also exist y 2 X and dj 2 X j such that riajx�rribjy and
rigjx�rridjy. Hence, ajbj�

	
r;j gjdj.

By solvability, there exist ai;bi 2 X i such that
aiajx�rbibjy�rr. Because riajx�rribjy, Lemma 2 and
antisymmetry imply that ai ¼ bi. By Lemma 6,

V i
jðajÞ þ V i

kðxkÞ ¼ Vi
jðbjÞ þ V i

kðykÞ

or

V i
jðajÞ � V i

jðbjÞ ¼ Vi
kðykÞ � Vi

kðxkÞ.

Similarly, the indifference rigjx�rridjy implies that

V i
jðgjÞ � V i

jðdjÞ ¼ Vi
kðykÞ � Vi

kðxkÞ.

Hence, V i
jðajÞ � Vi

jðbjÞ ¼ V i
jðgjÞ � V i

jðdjÞ.
By solvability, there also exist x0 and y0 in X such that

gjrkx0�rdjxky0�rr. By strong monotonicity, ajrkx0�r. It
follows from tradeoff consistency that ajrkx0�rbjrky0. For
suppose that ajrkx0�rbjrky0. Then, by solvability, there
exists a b0j 2 X j such that ajrkx0�rb

0
jrky0. By strong

monotonicity, bj�jb
0
j. But then ajbj�

	
r;jgjdj and

ajb
0
j�
	
r;jgjdj, but bjfjb

0
j ,which contradicts tradeoff consis-

tency. The case ajrkx0�rbjrky0 is excluded by a similar line
of argument.

The indifferences ajrkx0�rbjrky0 and gjrkx0�rdjrky0 imply
by Lemmas 2 and 6 and antisymmetry that

V k
j ðajÞ � Vk

j ðbjÞ ¼ Vk
j ðgjÞ � V k

j ðdjÞ.

Thus, Vi
jðajÞ � Vi

jðbjÞ ¼ Vi
jðgjÞ � Vi

jðdjÞ implies V k
j ðajÞ�

V k
j ðbjÞ ¼ V k

j ðgjÞ � Vk
j ðdjÞ. The functions V i

j and V k
j being

continuous on a connected domain implies that they are
related by a positive linear transformation. They are 0 at rj,

and hence, they are related by a scale factor. The scale
factor is positive by strong monotonicity.

Having established that for each given j the Vi
j are

proportional for different i, I now show that they can be
chosen identical. By solvability and strong monotonicity,
there exist alternatives x�rr, x0�rr with x0j ¼ xj, and x00�rr

with x00 ¼ x0i and x00k ¼ xk.

Because for each given j the V i
j are proportional for

different i, we can write V i
j ¼ lk

j Vk
j . Define V i ¼ V

j
i and

Vk ¼ V
j
k, i.e. l

j
i ¼ lj

k ¼ 1. Define V j ¼ V k
j , i.e. l

k
j ¼ 1. By

Lemma 6, we are free to scale V k
i such that lk

i ¼ 1.

Similarly, by Lemma 6 Vi
j can be scaled such that li

j ¼ 1. It

remains to show that li
k ¼ 1.

Because xj ¼ x0j, a comparison between x and x0 shows
that

ViðxiÞ þ VkðxkÞ ¼ V iðx
0
iÞ þ Vkðx

0
kÞ. (A.1)

Because xk ¼ x00k, a comparison between x and x00 shows
that

ViðxiÞ þ VjðxjÞ ¼ Viðx
0
iÞ þ Vjðx

00
j Þ, (A.2)

and, because x0i ¼ x00i , a comparison between x0 and x00

shows that

VjðxjÞ þ li
kVkðx

0
kÞ ¼ V jðx

00
j Þ þ li

kVkðxkÞ. (A.3)

From (A.2) and (A.1),

VjðxjÞ � V jðx
00
j Þ ¼ V iðx

0
iÞ � V iðxiÞ ¼ VkðxkÞ � Vkðx

0
kÞ.

From (A.3),

VjðxjÞ � V jðx
00
j Þ ¼ li

kðV kðxkÞ � Vkðx
0
kÞÞ.

Hence, li
k ¼ 1 and this establishes that for each given j the

functions V i
j can be chosen identical for different i.

Now consider the case n43. Let i; j; k, and m be distinct
coordinates. By solvability, there exist alternatives
xjxkr�ryjykr�rr. These indifferences imply both

Vi
jðxjÞ þ V i

kðxkÞ ¼ Vi
jðyjÞ þ Vi

kðykÞ

and

Vm
j ðxjÞ þ Vm

k ðxkÞ ¼ V m
j ðyjÞ þ V m

k ðykÞ.

Because fV i
j ;V

i
kg and fV

m
j ;V

m
k g are both additive repre-

sentations of kfj;kg, they must, by the uniqueness proper-
ties of additive representations and the fact that V i

jðrjÞ ¼

Vm
j ðrjÞ ¼ Vi

kðrkÞ ¼ V m
k ðrkÞ ¼ 0, be related by a common

scale factor, which is positive by strong monotonicity.
Because j and k were chosen arbitrarily, V i

j ¼ sV m
j for all

i; j;m in f1; . . . ; ng; iajam. Rescaling establishes that for
each given j the functions Vi

j can be chosen identical for
different i. &

Because of Lemma 7, I will henceforth drop the
superscript i in V i

j and simply write Vj ; j ¼ 1; . . . ; n.

Lemma 8. If xkry then
Pn

j¼1V jðxjÞX
Pn

j¼1V jðyjÞ.

Proof. Suppose that x�rykrr. If xj�yj for all j then we are
done because all the V j represent preferences over out-
comes. Assume therefore that x and y do not yield
equivalent outcomes for each coordinate. Assume, without
loss of generality, that x1�1y1. By solvability, there exist
a1;b1 2 X 1 such that a1x�rb1y�rr. If x0kð1Þy0 then a1%1b1.
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Hence, by weak monotonicity, b1xkrb1y. By Lemma 2,
y1xkry and, by strong monotonicity, x�ry, contrary to
assumption. Hence, x0�ð1Þy0. By strong monotonicity, also
x1y�ry�rx. By solvability, there exists a y02 2 X 2 such that
x�rx1y02y. Because a1x�rr, Lemma 2 implies that a1y02y�rr.
Hence, x0�ð1Þy02y

0.By Lemma 6

Xn

j¼2

VjðxjÞ ¼ V 2ðy
0
2Þ þ

Xn

j¼3

VjðyjÞ. (A.4)

The indifferences x�rx1y02y�ry imply, by Lemma 2, that
ðx1; y02; y4; . . . ; ynÞ�

ð3Þ ðy1; y2; y4; . . . ; ynÞ. Hence, from Lem-
ma 6 applied to k

ð3Þ,

V1ðx1Þ þ V2ðy
0
2Þ þ

Xn

j¼4

VjðyjÞ

¼ V1ðy1Þ þ V 2ðy2Þ þ
Xn

j¼4

VjðyjÞ. ðA:5Þ

Adding (A.4) and (A.5) and deleting the common terms
V2ðy

0
2Þ and

Pn
j¼4V j ðyjÞ gives

Pn
j¼1V jðxjÞ ¼

Pn
j¼1V jðyjÞ.

If x�ry then there exists, by solvability, a1 2 X 1 such
that x�ra1y. By strong monotonicity, a1�1y1, and hence,
V1ða1Þ4V1ðy1Þ. By what was established above,

Pn
j¼1

Vj ðxjÞ ¼ V1 ða1Þ þ
Pn

j¼2 V j ðyjÞ4
Pn

j¼1V jðyjÞ. &

Lemma 9. If
Pn

j¼1V jðxjÞX0 then xkrr.

Proof. Suppose that
Pn

j¼1V jðxjÞ ¼ 0 ¼
Pn

j¼1VjðrjÞ. If
VjðxjÞ ¼ 0 for all j then it follows from the fact that the
Vj are representing, r-upper completeness, and antisym-
metry that x�rr. So let at least two V jðxjÞ be nonzero and
assume, without loss of generality, that V1ðx1Þ40, i.e.
x1�1r1, because, by Lemma 6, V 1 represents �1. ThenPn

j¼2VjðxjÞo0. By continuity and unboundedness of V 2

(see Lemma 6), there exists an outcome a2 2 X 2 such thatPn
j¼2VjðxjÞ ¼ V2ða2Þ. Hence, by Lemma 6, x0�ð1Þa2r0. By

Lemma 2, x�rx1a2r. Because
Pn

j¼1VjðxjÞ ¼
Pn

j¼1V jðrjÞ,Pn
j¼1VjðrjÞ ¼ V 1ðx1Þ þ V2ða2Þ. Hence, by Lemma 6,
ðx1; a2; r4; . . . ; rnÞ�

ð3Þðr1; r2; r4; . . . ; rnÞ. That is, ðx1; a2; r3; r4;
. . . ; rnÞ�rr. Hence, by Lemma 2, x1a2r�rr. Transitivity
gives x�rr.

Suppose that
Pn

j¼1VjðxjÞ40. By continuity and un-
boundedness of V 1, there exists an outcome a1 2 X 1 such
that V 1ða1Þ þ

Pn
j¼2V jðxjÞ ¼ 0. Clearly, V 1ða1ÞoV1ðx1Þ,

and hence, because, by Lemma 6, V 1 is representing
a1�1x1. By what was proved above, a1x�rr. By strong
monotonicity, x�rr. &

Lemma 10. If ðx; yÞ 2 Br, then
Pn

j¼1V jðxjÞX
Pn

j¼1V jðyjÞ )

xkry.

Proof. The proof resembles the proof of Lemma 9. Let
ðx; yÞ 2 Br and suppose first that

Pn
j¼1VjðxjÞ ¼

Pn
j¼1V jðyjÞ.

If VjðxjÞ ¼ VjðyjÞ for all j then because the V j are
representing, it follows from weak monotonicity that
x�ry. So let V 1ðx1Þ4V 1ðy1Þ. Then

Pn
j¼2V jðxjÞo

Pn
j¼2

VjðyjÞ. By continuity and unboundedness of V2, there
exists an outcome a2 2 X 2 such that

Pn
j¼2 V jðxjÞ ¼
V2ða2Þ þ
Pn

j¼3V jðyjÞ. By Lemma 6, x0�ð1Þa2y0. That is,
there exists an outcome a1 2 X 1 such that a1x�r a1a2y�rr.

By Lemma 2, x�rx1a2y. Because
Pn

j¼1 V jðxjÞ ¼Pn
j¼1VjðyjÞ;

Pn
j¼1V jðyjÞ ¼ V1ðx1Þ þ V 2ða2Þ þ

Pn
j¼3 V jðyjÞ.

Hence, by Lemma 6, ðx1; a2; y4; . . . ; ynÞ�
ð3Þðy1; y2; y4;

. . . ; ynÞ. That is, there is an outcome a3 2 X 3 such that
ðx1; a2; a3; y4; . . . ; ynÞ�rðy1; y2; a3; y4; . . . ; ynÞ�rr. By Lemma
2, x1a2y�ry. Transitivity gives x�ry.
Suppose that

Pn
j¼1VjðxjÞ4

Pn
j¼1V jðyjÞ. By continuity

and unboundedness of V 1, there exists an outcome a1 such
that

Pn
j¼1V jðxjÞ ¼ V 1ða1Þ þ

Pn
j¼1V jðyjÞ. Clearly, V 1ða1Þ4

V1ðy1Þ, and hence, because V1 is representing a1�1y1. By
what was proved above, x�ra1y. By strong monotonicity,
x�ry. &

This completes the proof that statement (1) of Theorem
3.1 implies statement (2). To summarize, (2a) follows from
Lemmas 6, 7, and 9 and the definition of Br, (2b) follows
from Lemmas 8 and 10, and (2c), (2d), and (2e) follow from
Lemmas 6 and 7. &

Proof of Theorem 3.2. Assume that statement (2) holds.
For transitivity, upper completeness, weak monotonicity,
solvability, preference continuity, and tradeoff consistency
the proof is the same as in Theorem 3.1. Reference
monotonicity follows because the V j are decreasing in
their second argument. If ajxkaj rajy then V jðaj ; ajÞþP

iajV iðxi; riÞXVjðaj ; ajÞþ
P

iajV iðyi; riÞ. Because V jðaj ; ajÞ

¼ V jðbj ;bjÞ ¼ 0, also Vjðbj ; bjÞ þ
P

iajV iðxi; riÞXVjðbj ;bjÞ

þ
P

iajV iðyi; riÞ and, thus, bjxkbj r
bjy, which establishes

neutral independence.
Assume next statement (1). As in the proof of Theorem

3.1, the kj are made antisymmetric. As before, for any
aj 2 X j, ½aj
 ¼ fbj 2 X j : bj�jajg and for any alternative
x; ½x
 ¼ ð½x1
; . . . ; ½xn
Þ. Define preference relations k½x
 by
choosing any element r 2 ½x
 and defining k½x
 ¼k½r
. By
reference monotonicity, the definition does not depend on
the choice of r.
The proof of Theorem 3.1 can now be applied to obtain

continuous functions Vr
j : X j ! R; j ¼ 1; . . . ; n with range

R, such that ðx; yÞ 2 Br if
Pn

j¼1V
r
j ðxjÞX0 or

Pn
j¼1V

r
j ðyjÞX0,

for all ðx; yÞ 2 Br, xkry iff
Pn

j¼1Vr
j ðxjÞX

Pn
j¼1Vr

j ðyjÞ, and

for all j 2 f1; . . . ; ng;V r
j ðrjÞ ¼ 0 and V r

j represents kj.

It remains to prove that if rj ¼ r0j, then every Vr
j and Vr0

j

can be chosen identical. This is established by the next
lemma.

Lemma 11. Let the Vr
j : X j ! R; j ¼ 1; . . . ; n, be as defined

above. For all j and r; r0, if rj ¼ r0j, then V r
j can be chosen

identical to V r0

j .

Proof. By solvability and strong monotonicity, there exist
nonindifferent outcomes ai;bi; gj ; dj such that aigjr�r

bidjr�rr. For kai; j, let r0kark and for all jak, r0j ¼ rj.
By neutral independence, aigjr

0�r0bidjr
0. Writing out these

two indifferences, canceling common terms, gives by
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Lemma 8:

V r
i ðaiÞ þ Vr

j ðgjÞ ¼ V r
i ðbiÞ þ V r

j ðdjÞ (A.6)

and

V r0

i ðaiÞ þ V r0

j ðgjÞ ¼ V r0

i ðbiÞ þ Vr0

j ðdjÞ. (A.7)

The functions V r
i and V r0

i and Vr
j and Vr0

j are continuous on
a connected domain and, hence (A.6) and (A.7) imply by
the uniqueness properties of additive representations
(Wakker, 1989) that Vr

i and V r0

i and V r
j and V r0

j are related
by positive linear transformations with a common unit. Vr

i

and Vr0

i are 0 at ri ¼ r0i and V r
j and V r0

j are 0 at rj ¼ r0j .
Hence, they are related by a common scale factor. The
scale factor is positive by strong monotonicity. It follows

that V r
i ¼ lijV

r0

i and Vr
j ¼ lijV

r0

j .

The above argument can be repeated, interchanging the
roles of j and k, to find Vr

i ¼ likVr0

i and Vr
k ¼ likV r0

k .
Rescale the ls to 1 to give Vr

j ¼ Vr0

j for rj ¼ r0j. This scaling
does not interfere with the scaling selected in Lemma 7 of
Theorem 3.1. For example, take y1�1r1; y1�1r

0
1 and set

V r
1ðy1Þ ¼ V r0

1 ðy1Þ ¼ 1. &

Because of Lemma 11, V r
j ðajÞ is independent of ri for

iaj, and we can write V iðai; riÞ instead of V r
i ðaiÞ. By

reference monotonicity the V iðai; riÞ are decreasing in ri.
This completes the proof that statement (1) implies
statement (2) and, hence, the proof of Theorem 3.2. &
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