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Abstract

This paper explores how to evaluate changes in survival probabilities when people do not process probabilities linearly, as is
commonly assumed in the literature, but distort probabilities. We show that the valuation of risks to life depends critically on
two parameters: the elasticity of the probability weighting function and the elasticity of the utility function with respect to future
consumption. Using estimates from the empirical literature we derive that the bias of erroneously ignoring probability distortion in
general leads to cost–benefit ratios that are too high and that generate too much priority for programs that save young lives.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Cost–benefit analyses of policies that cause changes
n risks to human life require that a monetary value
e attached to the changes involved. Several papers
ave derived such valuation formulas in a life-cycle
ramework under the assumption that people maximize
xpected utility (Usher, 1973; Conley, 1976; Arthur,
981; Bergstrom, 1982; Jones-Lee and Poncelet, 1982;
hepard and Zeckhauser, 1984; Rosen, 1988; Ehrlich,
000; Johansson, 2002). Empirical evidence abounds,
owever, that people often behave in ways that system-
tically violate expected utility (Camerer, 1995; Starmer,
000). Even though cost–benefit analysis is a prescrip-
ive activity, these descriptive violations are important,
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because the elicitation of willingness to pay is usually
done descriptively and, hence, is affected by the viola-
tions of expected utility. Incorrectly assuming expected
utility in analyzing responses to willingness to pay ques-
tions may lead to biased risk valuations and, conse-
quently, to biased policy recommendations. There is a
need to derive valuation formulas for changes in mortal-
ity risks that take into account that people deviate from
expected utility.

An important reason why people deviate from
expected utility is that they do not evaluate proba-
bilities linearly, but distort probabilities. Many stud-
ies have demonstrated the importance of probabil-
ity distortion in risky choice, both for monetary out-
comes (Tversky and Kahneman, 1992; Camerer and
Ho, 1994; Wu and Gonzalez, 1996; Gonzalez and Wu,
1999; Abdellaoui, 2000) and for health outcomes and
life and death decisions (Bleichrodt and Pinto, 2000).
There is also growing evidence that probability dis-
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tortion plays an important role in explaining a variety
of field data (Camerer, 2000). For evidence of proba-
bility distortion in insurance decisions see, for exam-
ple, Hershey and Schoemaker (1980) and Wakker et
al. (1997, 2005). A formal theory of probability dis-
tortion is rank-dependent utility (Quiggin, 1981; Yaari,
1987).

This paper explores the impact of probability dis-
tortion on the evaluation of changes in risks to human
life while paying attention to the effect of such distor-
tions on the optimal intertemporal consumption choices.
These choices depend not only on probability distor-
tion but also on the changes in insurance opportunities
offered by the changes in the probability of death. Our
main result is that when people distort probabilities, the
value of changes in survival risks is determined jointly by
parameters that are already present under expected util-
ity and by a new one: the elasticity of the probability
weighting function. Using estimates from the empir-
ical literature, we conclude that erroneously ignoring
probability distortion will generally lead to cost–benefit
ratios that are too high and that generate too much prior-
ity for activities that achieve risk reductions at younger
ages.

The structure of the paper is as follows. In Section
2, we briefly explain rank-dependent utility. Sections
3 and 4 analyze the valuation of mortality risks under
rank-dependent utility. To illustrate the main concepts
involved, we start in Section 3 with the simple case in
which there are just two periods. In Section 4, we extend

all prospects P and Q, P�Q iff V(P) ≥ V(Q). Rank-
dependent utility holds if preferences over prospects can
be represented by

m∑
i=1

πiU(xi), (1)

where U is a utility function, a real-valued function over
outcomes. The utility function in rank-dependent utility
is unique up to unit and location. The decision weights
πi are defined as

πi = w

⎛
⎝ i∑

j=1

pj

⎞
⎠− w

⎛
⎝ i−1∑

j=1

pj

⎞
⎠ , (2)

where w is a probability weighting function, it satisfies
w(0) = 0 and w(1) = 1 and it is strictly increasing, i.e.
if p > q then w(p) > w(q). Expected utility is the special
case of rank-dependent utility where w(p) = p for all p
in [0, 1]. Eq. (2) shows that in rank-dependent utility the
decision weights πi are computed by taking the differ-
ence between the transformed probability of receiving at
least xi minus the transformed probability of receiving a
better outcome than xi.

Empirical and experimental studies have suggested
that the probability weighting function is inverse S-
shaped, overweighting low probabilities and under-
weighting high probabilities (Tversky and Kahneman,
1992; Gonzalez and Wu, 1999; Abdellaoui, 2000;
Bleichrodt and Pinto, 2000; Camerer, 2000; Wakker et
the two-period model to a multi-period model. Section 5
discusses the interpretation of our findings and concludes
the paper. Proofs and extensions are in Appendices A
and B.

2. Rank-dependent utility

We consider an individual who has to make a choice
between prospects. A typical prospect is (p1, x1; . . .;
pm, xm), which gives monetary outcome xi with proba-
bility pi. Hence, prospects have finite support. The set
of conceivable monetary amounts is a bounded positive
interval [0, M]. The set of prospects P includes all risk-
less prospects, i.e. prospects that give one outcome with
probability one. Riskless prospects are identified with
the outcome they generate. The individual has prefer-
ences over P and, as usual, � denotes weak preference,
� strict preference, and ∼ indifference. Because P con-
tains all riskless prospects, � also defines a preference
relation over outcomes. It is implicit in the notation (p1,
x1; . . .; pm, xm) that x1 � ···� xm, i.e. each prospect is
rank-ordered. A function V represents � whenever for
al., 2005). The point at which the function changes from
overweighting probabilities to underweighting probabil-

Fig. 1. An inverse S-shaped probability weighting function.
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ities, i.e. the point at which w(p) = p, lies between 0.30
and 0.40. Fig. 1 displays such a probability weighting
function. The dotted line shows the line where w(p) = p,
the case in which expected utility holds. The probabil-
ity weighting function is particularly steep, reflecting
high sensitivity to changes in probability, for probabili-
ties close to 0 and close to 1.

3. Two periods

3.1. Decision problem

Consider an individual with given initial wealth
W > 0, who lives for at most two periods. This assump-
tion is clearly unrealistic, but it will help to clarify the
main concepts involved. The extension to more than two
periods is presented in the next section. The individual
lives for sure in the first period and has a probability p to
survive to the second period. This probability is known
to the individual. The individual’s decision problem is
to decide on consumption c1 in the first period, with
0 ≤ c1 ≤ W. Hence, the individual cannot have debts.
Consumption is monetary and utility is increasing and
concave in consumption, i.e. U′(c) > 0 and U′′(c) < 0.

We assume the stochastic equivalent of a perfect cap-
ital market in which actuarially fair life-assured annu-
ities are available (Yaari, 1965). That is, the individual
participates in an actuarial annuity system in which a
cohort of identical individuals turn over their wealth to
a
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Given the individual’s budget constraint, his choice of
c1 immediately implies c2 = (W−c1)(1+r)

p
.

We assume discounted utility with subjective discount
rate a. That is, if the individual lives in the second period
then his utility is U(c1) + U(c2)

1+a
. So this is discounted

utility with time separability as in Samuelson (1937).
Throughout this section, we assume that the individual’s
subjective rate of discount equals the market rate of inter-
est r, i.e. a = r. This assumption is made to clarify the
effect of probability distortion on the evaluation of risks
to life. We briefly consider relaxing this assumption in
Appendix B. We assume that the individual has no heirs
or altruism towards others and, hence, dying is identi-
fied with consuming c2 = 0. We scale utility such that
U(0) = 0. Therefore, the utility of a choice c1 if the indi-
vidual dies after period 1 is U(c1).

Given the above assumptions, the individual faces two
options for a given choice of c1: there is a probability p
that his utility will be U(c1) + (U(c2)/(1 + r)) and a prob-
ability 1 − p that his utility will be U(c1). We assume
that the individual maximizes rank-dependent utility.
Because living during period 2 generates at least as much
utility as being dead the individual’s total utility is

RDU = w(p) ·
(

U(c1) + U(c2)

1 + r

)
+ (1 − w(p)) · U(c1)

= U(c1) + w(p) · U(c2)

1 + r
. (4)

(

n insurance-finance company in exchange for a con-
ract that guarantees consumption c2 until death, where
2 is the consumption in the second period, which will
e specified below. The consumption risk of death is
nsured because those who die earlier than average effec-
ively “subsidize” those who live longer than average.
s Rosen (1988) argued, a model with actuarially fair

nnuities yields a value of changes in risks to life that is
ppropriate for cost–benefit analysis, because the costs
f supporting the lives saved are deducted from the ben-
fits derived from these lives. We assume that the insur-
nce company does not distort probabilities, possibly
ecause of its extensive experience with handling prob-
bilities, and bases its actuarial calculations on expected
alue, because it has many customers and the law of large
umbers applies to it. Then, the individual’s budget con-
traint is equal to

= c1 + p · c2

1 + r
, (3)

here r is the market rate of interest. Because we assume
hat all individuals are identical, the same W and p apply
o all individuals participating in the annuity system.
3.2. Optimal consumption

Theorem 1. Suppose that the decision model of Section
3.1 holds. Then, for all p in (0, 1):

(a) if w(p) < p then c1 > c2;
b) if w(p) > p then c1 < c2;

(c) if w(p) = p then c1 = c2.

We say that for all p in (0, 1) the individual is
pessimistic at p if w(p) < p. The individual is pes-
simistic if w(p) < p for all p in (0, 1), i.e. if he is
pessimistic at all p in (0, 1). For all p in (0, 1), the
individual is optimistic at p if w(p) > p. The individual
is optimistic if w(p) < p for all p in (0, 1). Theorem 1
shows that a pessimistic individual will always choose a
decreasing consumption profile. Intuitively, this follows
because the individual assigns a lower decision weight
to being alive in period 2 than the insurance company
does and, hence, effectively considers the insurance
arrangement actuarially unfair. Theorem 1 also shows
that an optimistic individual will always choose an
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increasing consumption profile and that an expected
utility maximizer, who does not distort probabilities,
will choose a constant consumption profile.

Compared with expected utility, pessimism leads to
a reduction in future consumption and optimism leads
to an increase in future consumption. The empirical
findings on probability weighting, briefly reviewed in
Section 2, therefore imply that if the survival probability
p is less than (approximately) 0.35, the individual will
choose an increasing consumption profile; else, he will
choose a decreasing consumption profile.

3.3. Willingness to pay

We now determine the individual’s willingness to pay
for a change in mortality risk that affects all individu-
als involved in the insurance pool similarly. Summing
individual willingness to pay over all individuals in the
insurance pool will give societal willingness to pay for
this increase in the survival probability.

Theorem 2. Suppose that the decision model of Sec-
tion 3.1 holds. Then, the individual willingness to pay
for a change in mortality risk that affects all individ-
uals in the insurance pool in the same way is equal
to c2

1+r

ϕp−εc2
εc2

, where ϕp = p · w′(p)
w(p) denotes the elas-

ticity of the probability weighting function at p and
εc2 = c2 · U ′(c2)

U(c2) denotes the elasticity of the utility func-
tion at c2.

intertemporal substitution of consumption and the value
of being alive relative to being dead and is discussed in
detail by Rosen (1988).

Theorem 2 shows that the individual is willing to pay
for reductions in mortality risk if and only if εc2 < ϕp.
If εc2 > ϕp then the individual is willing to pay for
increases in mortality risk. This possibility may appear
counterintuitive, but can arise because an increase in the
survival probability has two effects; see Fig. 2 for an
illustration. First, an increase in the survival probability
increases rank-dependent utility U(c1) + w(p) · U(c2)

1+r
.

This effect is illustrated in Fig. 2A. The initial opti-
mal point is point A and the slope of the indifference
curve there is U ′(c1)

w(p)U ′(c2) , assuming for ease of illustra-
tion that the subjective rate of discount is zero. Suppose
now that the probability of survival increases to p*. The
new indifference curve, the curve RS in Fig. 2A, is shal-
lower than the original indifference curve because its
slope is equal to U ′(c1)

w(p∗)U ′(c2) and w(p∗) > w(p) by the
probability weighting function being strictly increasing.
The difference in slope depends on the elasticity of the
probability weighting function. The level of utility at A is
now U(c∗

1) + w(p∗)U(c∗
2), which is larger than the utility

obtained at the original indifference curve. Besides, A is
no longer optimal at the original budget line and, hence,
the individual can further increase his utility. If the bud-
get line were not affected there would be an increase in
utility caused by the increase in the survival probability
and the size of this increase depends on the elasticity of

of a ch
Theorem 2 says that the willingness to pay for
reductions in mortality risk is positively associated with
consumption in period 2 and with the elasticity of the
probability weighting function and negatively with the
interest rate and the elasticity of the utility function.
The parameter εc2 reflects both the possibilities for

Fig. 2. (A and B) The influence
the probability weighting function.
The budget line is, however, affected; this second

effect of the increase in the survival probability is illus-
trated in Fig. 2B. Due to the increase in survival prob-
ability, more individuals in the insurance pool survive
and the total wealth has to be shared between more sur-

ange in the survival probability.
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vivors. As a result, the budget line shifts to the new line
W − W/p*. That is, the individual’s consumption oppor-
tunities are reduced. The extent to which this reduction
in consumption opportunities affects utility depends on
the elasticity of the utility function. The more elastic the
utility function is, the larger is the decrease in utility.

The combined effect is shown in Fig. 2B by the shift
from point A to point B. Whether the individual is willing
to pay for the increase in survival probability depends
on whether the utility at B exceeds the utility at A. If
the elasticity of the utility function is high relative to
the elasticity of the probability weighting function then
willingness to pay can be negative. In that case the posi-
tive effect of the increase in p is relatively small, because
the individual is insensitive to changes in p, compared
with the negative effect due to the reduced consumption
opportunities and the resulting decrease in the utility of
consumption. In the extreme case where the elasticity of
the probability weighting function is zero, the new and
the original indifference curves coincide and the increase
in the survival probability clearly reduces the individ-
ual’s utility.

3.4. Illustrations

We noted above that c2 depends among other things
on whether the individual is pessimistic or optimistic.
For the inverse S-shaped probability weighting function
this means that c2 will tend to decrease with the survival
p
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prediction is consistent with the available empirical evi-
dence (Smith and Desvousges, 1987). As was shown by
Smith and Desvousges (1987), such an increasing rela-
tionship between survival probability and willingness to
pay cannot be explained under expected utility.

A simple numerical example may illustrate. Suppose
εc2 is constant and equal to 0.25, a value which is consis-
tent with the data in Thaler and Rosen (1975). Suppose
further that the probability weighting function is equal
to Prelec’s function (Eq. (5)) with the parameter esti-
mates α = 1.08 and β = 0.53 obtained by Bleichrodt and
Pinto (2000) and that r = 0.10. Fig. 3A shows that c2 is
generally decreasing with the survival probability and
this effect is particularly strong for low survival prob-
abilities. There is only a small increase in c2 for high
survival probabilities.1 The elasticity ϕp rises, however,
with the survival probability, as is shown in Fig. 3B, and
this effect is particularly strong for high survival prob-
abilities. Fig. 3C shows that willingness to pay indeed
has the predicted U-shape: it decreases up to p = 0.28 and
increases from p = 0.28 onwards.

3.5. A comparison between rank-dependent utility
and expected utility

3.5.1. Same degree of utility curvature
We will assume that εc is constant. This assumption

was also made in Thaler and Rosen (1975) and cor-
responds to utility being a power function. The power
robability. However, ϕp tends to increase with p given
nverse S-shaped probability weighting. For example, if
e take Prelec’s (1998) weighting function

(p) = e−α(− ln p)β , (5)

hich must have α > 0, 0 < β < 1, to satisfy the require-
ents of an inverse S-shaped probability weighting func-

ion, then

p = αβ(− ln p)β−1, (6)

nd ϕp is increasing in probability. Hence, Theorem
shows that the effect of survival probability on the
illingness to pay for a change in mortality risk is sign-

mbiguous.
In the expression for the willingness to pay (Theorem

), for small probabilities the effect of probability
eighting on c2 will generally outweigh the effect of
p, but for large probabilities the effect of ϕp will domi-
ate. Ceteris paribus, this suggests a U-shaped relation-
hip between willingness to pay and survival probability.
n particular, for high survival probabilities willingness
o pay will increase with the survival probability. This
utility function is often used in economics and decision
analysis. Under expected utility, ϕp = 1 for all p in [0,
1]. Assume for the time being that the utility function
in rank-dependent utility is equal to the utility function
in expected utility. That is, we effectively study the pure
impact of the introduction of probability distortion on
the willingness to pay for changes in mortality risks.
Theorem 2 shows that this impact depends on whether
ϕp is larger or smaller than 1 and on the effect of proba-
bility distortion on c2. We observed in Theorem 1 that if
the individual is optimistic (pessimistic) then probabil-
ity distortion will lead to an increase (decrease) in c2 in
comparison with expected utility. Hence, we obtain:

Corollary 3. Suppose that the decision model of Sec-
tion 3.1 holds, that the utility function in rank-dependent
utility is identical to the utility function in expected util-
ity, and that εc is constant. Then, for all p in (0, 1), if

1 Bleichrodt and Pinto (2000) did not actually measure probabil-
ity weighting for extreme probabilities so the observations for such
extreme probabilities should be interpreted with care.
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Fig. 3. The influence of survival probability on c2, ϕp, and WTP: (A) the relationship between c2 and p; (B) the relationship between ϕ and p; (C)
the relationship between WTP and p.

ϕp > 1 and the individual is optimistic at p, probabil-
ity distortion leads to an increase in willingness to pay
for changes in mortality risk. If ϕp < 1 and the individ-
ual is pessimistic at p, probability distortion leads to a
decrease in willingness to pay for changes in mortality
risk.

In the other cases (e.g. if ϕp > 1 and the individual is
pessimistic at p or if ϕp < 1 and the individual is opti-
mistic at p) it is not possible to make statements about
the effect of probability distortion on willingness to pay
for changes in mortality risk that are generally valid.
Suppose that Prelec’s (1998) probability weighting func-
tion holds with the estimates obtained by Bleichrodt and
Pinto (2000). Then, w(p) ≤ p for p exceeding 0.30 and
ϕp ≤ 1 for p less than 0.74. Hence, probability distor-
tion will decrease the willingness to pay for reductions
in mortality risk if the survival probability lies between
0.30 and 0.74. For other values of p the effect is sign-
ambiguous.

Fig. 4A shows the effect of the introduction of prob-
ability distortion using the numerical example of the

previous subsection. The figure shows the ratio of will-
ingness to pay after the introduction of probability dis-
tortion and willingness to pay under expected utility.
The dotted horizontal line serves as a benchmark and
corresponds to no impact of probability distortion. The
introduction of probability distortion leads to a fall in
willingness to pay when the survival probability is less
than 0.81 and to an increase in willingness to pay when
the survival probability exceeds 0.81. The difference can
be large. If p is around 0.20, the degree of optimism and,
hence, the difference between the optimal c2 under rank-
dependent utility and under expected utility is small, but
ϕp is also small leading to a willingness to pay that is
nearly three times lower than under expected utility. If
p = 0.99 then the degree of pessimism is small, but ϕp is
high and the willingness to pay is almost six times higher
than under expected utility.

3.5.2. Different degrees of utility curvature
Let us now drop the assumption that the utility func-

tion in rank-dependent utility is equal to the utility func-
tion in expected utility. Several authors have shown that
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Fig. 4. The influence of probability distortion on WTP: (A) same utility and (B) different utility.

under rank-dependent utility, the utility function is less
concave, hence closer to linearity, than under expected
utility. See Edwards (1955), Fox et al. (1996), Selten
et al. (1999), Luce (2000), Rabin (2000), and Diecidue
and Wakker (2002) when the outcome domain con-
sists of moderate amounts of money and Wakker and
Deneffe (1996) and Bleichrodt et al. (1999) when the
outcome domain consists of life durations. This finding
can be explained by the fact that under expected util-
ity all risk attitude is captured in the utility function,
whereas under rank-dependent utility part of the risk
attitude is modeled through the probability weighting
function.

In general, we cannot conclude what will happen to
the elasticity of a utility function when it becomes less
concave. However, if utility is a power function then the
elasticity will increase when the utility function becomes
less concave and the cost of the increase in the sur-
vival probability, decreased consumption opportunities
because more individuals in the pool survive, will get
more weight. Hence, willingness to pay will fall ceteris
paribus.

The difference in curvature of utility also affects
the difference between the optimal values of c2 under
rank-dependent utility (c2RDU) and under expected util-
ity (c2EU). If a utility function becomes less concave then
its marginal utility will decrease at a lower rate. Conse-
quently, |c2RDU − c2EU | will increase in comparison with
the case where we assumed identical utility functions
leading, ceteris paribus, to a lower willingness to pay
w
w

C
t

rank-dependent utility is less concave than the utility
function in expected utility. If utility is a power function
then for all p in (0, 1) the willingness to pay for changes
in mortality risk under rank-dependent utility will fall
compared with the situation where we assumed that the
utility function in rank-dependent utility was the same
as in expected utility when the individual is pessimistic
at p.

Suppose that the utility function is a power function.
Then, under the empirically observed inverse S-shaped
probability weighting function, the effect of less concave
utility under rank-dependent utility than under expected
utility will be a decrease in willingness to pay under
rank-dependent utility. This is clearly the case if p > 0.35
because then c2 falls and εc2 rises. For p < 0.35, ϕp is
close to εc2 , and the effect of a change in εc2 on the

ratio
ϕp−εc2

εc2
will be much larger than its effect on c2.

Consequently, willingness to pay will fall.
Fig. 4B shows the effect of different utility in the

numerical example described afore. We considered two
deviations in utility: “small”, εc2 = 0.30 under rank-
dependent utility and εc2 = 0.25 under expected util-
ity, and “large”, εc2 = 0.50 under rank-dependent util-
ity and εc2 = 0.25 under expected utility, leaving all
other parameters unchanged. The pattern is similar in
both cases, although obviously more pronounced for
the larger deviation: willingness to pay under rank-
dependent utility falls compared with expected util-
hen w(p) < p and to a higher willingness to pay when
(p) > p. Hence, we obtain:

orollary 4. Suppose that the decision model of Sec-
ion 3.1 holds. Suppose also that the utility function in
ity. In fact, willingness to pay becomes negative under
rank-dependent utility for small probabilities for the
small deviation and up till p = 0.28 for the large devi-
ation. Only for high survival probabilities is the will-
ingness to pay higher under rank-dependent utility than
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under expected utility (for p higher than 0.87 for the
small deviation and for p higher than 0.96 for the large
deviation).

4. More than two periods

4.1. Decision model

We now consider the case where there are more than
two periods. The decision model is the same as that in
Section 3.1 except for the following. The individual lives
a maximum of T periods where T is an upper bound
on the length of life. Let pt be the probability that the
individual survives during period t, t ∈ {1, . . ., T}. Then,
the probability of being alive at period t, St, is equal to
St =∏t−1

τ=1pτ . The St are known to the individual. As
in Section 3.1, S1 = 1, i.e. the individual lives for sure
in the first period. We assume that St �= 0 for all t ∈ {1,
. . ., T}. The individual’s decision problem is to decide
on the ct’s, t = 1, . . ., T − 1, where for all t ∈ {1, . . .,
T − 1}, 0 ≤∑t

j=1cj ≤ W . Again, we assume that the
individual’s subjective rate of discount equals the rate of
time preference and we assume that the market rate of
interest is constant over time and equal to r. In Appendix
B, we consider the effects of relaxing these assumptions.
As before, the individual participates in the Yaari-type
social insurance arrangement.

The decision weights of a rank-dependent utility max-
imizer are computed by transforming the St. Because

4.2. Optimal consumption

Theorem 5. Suppose that the decision model of Sec-
tion 4.1 holds. Then, for all t, consumption in period t
increases with the ratio w(St )

St
.

Theorem 5 resembles Theorem 1: consumption in
period t is higher the more weight is given to the probabil-
ity of being alive in period t. If the probability weight-
ing function is inverse S-shaped then the relationship
between w(St )

St
and St and, hence, by Theorem 5, the

relationship between ct and St, is inverse U-shaped. Con-
sumption will be relatively high in those years in which
the probability of being alive is relatively low. It also fol-
lows from Theorem 5 that consumption is constant over
time under expected utility.

4.3. Willingness to pay

We determine the individual’s willingness to pay for
an age-specific change in age-specific mortality risk so
that the survival function St becomes St + δSt with δSt > 0
and St + δSt ≤ 1. Hence, we analyze the effect of an
increase in pτ for one given τ. By definition, this affects
not only Sτ but also St for all t > τ. We assume that the
change in age-specific risks affects all individuals in the
insurance pool in the same way.

Theorem 6. Suppose that the decision model of Sec-
tion 4.1 holds. Then, the individual’s willingness to
living longer is always preferred under the Yaari-type
social insurance arrangement, for any consumption pro-
file the best outcome is living for T periods in which case
the individual enjoys utility

T∑
t=1

U(ct)

(1 + r)t−1 , (7)

which obtains with probability ST. Hence, the decision
weight is w(ST ). In general, the decision weight of living
exactly τ periods and enjoying utility

∑τ
t=1

U(ct )
(1+r)t−1 is

w(Sτ) − w(Sτ+1). It follows from some simple algebraic
manipulation that the individual’s rank-dependent utility
is equal to

RDU =
T∑

t=1

w(St)
U(ct)

(1 + r)t−1 , (8)

and his budget constraint is equal to

W =
T∑

t=1

St

ct

(1 + r)t−1 . (9)
pay for an age-specific change in age-specific mortal-
ity risk that affects all individuals in the insurance pool
in the same way is equal to

∑T
t=1( ct

(1+r)t−1 (ϕSt −εct

εct
) δSt),

where ϕSt denotes the elasticity of the probabil-
ity weighting function at survival probability St and
εct denotes the elasticity of the utility function at
consumption ct.

Theorem 6 is similar to Theorem 2. The willing-
ness to pay for changes in mortality risk increases with
consumption and with the elasticity of the probabil-
ity weighting function and decreases with the interest
rate and with the elasticity of the utility function. As in
Section 3, if the probability weighting function has an
inverse S-shape then ϕSt will generally increase in St.
On the other hand, if the probability weighting function
is inverse S-shaped then ct will be a U-shaped function
of St. Therefore, the effect of St on willingness to pay is
sign-ambiguous. However, if the probability weighting
function is inverse S-shaped and the utility function does
not diverge “too much” from linearity, i.e. εct does not
differ “too much” from 1, then the effect of ϕSt will gen-
erally dominate and, consequently, willingness to pay
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will generally be higher for changes in St that occur in
years with higher survival probability.

4.4. A comparison between rank-dependent utility
and expected utility

We now compare willingness to pay under rank-
dependent utility and under expected utility. We start, as
in Section 3, with the case where the utility function in
rank-dependent utility is the same as the utility function
in expected utility. That is, we study the “pure effect”
of the introduction of probability distortion on willing-
ness to pay. We then drop this assumption and study
the empirically realistic case where the utility function
in rank-dependent utility is less concave than the util-
ity function in expected utility. We will show that the
conclusions of Corollaries 3 and 4 remain valid in the
multi-period setting.

4.4.1. Same degree of utility curvature
We assume that εct is constant. Under expected utility,

ϕSt = 1 for all St in [0, 1] and, by Theorem 5, consump-
tion is constant. From Theorem 6, it follows that under
expected utility the willingness to pay for changes in the
mortality schedule is equal to:

T∑
t=1

(
c

(1 + r)t−1

(
1 − εct

εct

)
δSt

)
. (10)

A comparison between Eq. (10) and Theorem 6 reveals
t
s
t
p
c
s
C

c
(
a
y
0
u
s
t
f
c
p
u
t
f

4.4.2. Different degrees of utility curvature
Relaxing the assumption that the utility function in

rank-dependent utility is equal to the utility function in
expected utility affects both εct and the ct. As in the
two-period case, we cannot draw definite conclusions
without imposing additional assumptions on the utility
function. Suppose that utility is a power function and,
hence, that its elasticity is constant. Assume further the
empirically plausible case where the utility function in
rank-dependent utility is less concave, i.e. closer to lin-
earity, than the expected utility function. Then, εct will be
larger under rank-dependent utility than under expected
utility, leading to a lower willingness to pay under rank-
dependent utility, ceteris paribus. Also, |ct − c| will rise,
leading to a lower willingness to pay in years in which
w(St) < St and to a higher willingness to pay in years
in which w(St) > St , ceteris paribus. Hence, Corollary
4 still holds.

If utility is a power function, then, as in the two-period
case, willingness to pay will fall under rank-dependent
utility when allowance is made for less concave utility
and probability weighting is described by the inverse S-
shaped probability weighting function most commonly
found in the literature. If St > 0.35 this follows from
Corollary 4. For St < 0.35,ϕSt is close to εct , and the effect
of a change in εct on the ratio ϕSt −εct

εct
will be much larger

than its effect on ct. Consequently, willingness to pay will
fall. For example, for Prelec’s (1998) probability weight-
ing function with the estimates obtained by Bleichrodt
hat the effect of probability distortion depends on the
ign of ct − c and on ϕSt . It leads to a higher willingness
o pay if ct > c and ϕSt > 1 and to a lower willingness to
ay if ct < c and ϕSt < 1. By Theorem 5, ct will exceed
when the individual is optimistic at St and ct will fall

hort of c when the individual is pessimistic at ct. Hence,
orollary 3 still holds in the multi-period setting.

Assume, for illustration, that probability distortion
an be described by Prelec’s (1998) weighting function
Eq. (5)) with the parameter estimates from Bleichrodt
nd Pinto (2000). Then, we find, as in Section 3.5, that
ears in which the survival probability lies between
.30 and 0.74 contribute to a higher willingness to pay
nder expected utility. For the other years, the effect is
ign-ambiguous. If the survival probability is high then
he effect of the elasticity of the probability weighting
unction, ϕSt , will dominate the effect of pessimism on
onsumption. Hence, for years in which the survival
robability is high, willingness to pay will be higher
nder rank-dependent utility. That is, probability distor-
ion leads to more favorable willingness to pay estimates
or activities that save the young.
and Pinto (2000), ϕSt never exceeds 0.52 in the range
where probabilities are overweighted. Hence, a modest
increase in εct from 0.25 to 0.30 will lead to a decrease in
ϕSt −εct

εct
of at least 30%, whereas the effect on ct is small.

5. Conclusions

This paper shows that if people distort probabili-
ties then a cost–benefit analysis that looks at people’s
responses as if they behave according to expected utility
will generally use willingness to pay estimates that are
too low. The exception is when programs are considered
that lead to risk reductions at younger ages. Hence, our
main conclusion is that erroneously ignoring probability
distortion in cost–benefit analysis will generally lead to
cost–benefit ratios that are too high and that generate too
much priority for programs that save “young lives”. As
we showed by numerical examples in Section 3, the bias
due to probability distortion can be large, in particular
in the plausible case where the utility function in rank-
dependent utility is less concave than the utility function
in expected utility.
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For conceptual clarity, we made several simplifying
assumptions. In Appendix B, we show that dropping the
assumptions that the individual’s subjective rate of dis-
count is equal to the market rate of interest and that
discounting is constant does not affect our main results,
Theorems 2 and 6. The model could of course be further
extended to encompass, for example, intentional bequest
motives (Chang, 1991), altruism, and the inclusion of
quality of life as an argument in the utility function. Such
extensions will undoubtedly make the definition of the
value of changes in risks to human life more complicated.
However, it is unlikely that they will affect the general
message of this paper regarding the effect of probability
distortion on cost–benefit ratios.
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Appendix A. Proofs

Proof of Theorem 1. The individual’s decision prob-
lem is

Max
c1

L = U(c1) + w(p) · 1

1 + r
U

(
(W − c1)(1 + r)

p

)

mortality probability p is equal to

dW

dp
= 1

1 + r

(
pw′(p)

w(p)

U(c2)

U ′(c2)
− c2

)

= c2

1 + r

ϕp − εc2

εc2

. �

Proof of Theorem 5. The individual’s decision prob-
lem is

Max
c1,...,cT−1

=
T∑

t=1

w(St)
U(ct)

(1 + r)t−1 (A4a)

with

W =
T∑

t=1

St

ct

(1 + r)t−1 . (A4b)

The budget constraint (A4b) can be rewritten as

cT = (1 + r)T−1

ST

(
W −

T−1∑
t=1

St

ct

(1 + r)t−1

)
. (A5)

Introducing (A5) into (A4a) and differentiating with
respect to c1, . . ., cT−1, we obtain after some algebraic
manipulations, the optimality conditions

U ′(ct)

U ′(ct′ )
=

w(St′ )
St′

w(St )
St

, for any t, t′ in {1, . . . , T − 1}.
(A6)
(A1)

and the first-order condition is

∂L

∂c1
= U ′(c1) − w(p)

p
U ′
(

(W − c1)(1 + r)

p

)
= 0.

(A2)

The second-order condition is

∂2L

∂c2
1

= U ′′(c1) − w(p)

p2 (1 + r)U ′′
(

(W − c1)(1 + r)

p

)
,

(A3)

which is negative by the concavity of U. Hence, we
obtain an interior solution.

Because c2 = (W−c1)(1+r)
p

, the first-order condition

shows that for a given p, U′(c2)�U′(c1) if and only if
w(p) � p. Because utility is increasing and concave in
consumption, w(p) � p implies c2 � c1. �

Proof of Theorem 2. By applying the envelope theo-
rem to (A1), the willingness to pay for a change in the
The second-order condition for a maximum is satisfied,
because utility is additive over time and because of the
concavity of the utility function and the linearity of the
budget constraint in each ct.

From (A6) and the concavity of U, we obtain that
ct � ct′ if and only if w(St )

St
� w(St′ )

St′
. Hence, consumption

will increase with the ratio w(St )
St

. �

Proof of Theorem 6. Because rank-dependent util-
ity depends on the entire T-tuple St we must study the
effect of variations in the T-tuple St. This is technically
a Fréchet derivative, i.e. a multi-dimensional derivative.
Let us use the symbol δ to denote this type of differenti-
ation. From (A4a) and (A5) we obtain

0 =
T∑

t=1

(
(w′(St)

U(ct)

(1 + r)t−1

− w(ST )

ST

U ′(cT )
ct

(1 + r)t−1

)
δSt

+
(

w(ST )

ST

U ′(cT )

)
dW, (A7)
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which yields

δW[δSt]

=
∑T

t=1

(
w′(St)

U(ct )
(1+r)t−1 − w(ST )

ST
U ′(cT ) ct

(1+r)t−1

)
δSt

w(ST )
ST

U ′(cT )

=
T∑

t=1

(
ct

(1 + r)t−1

(
ϕSt − εct

εct

)
δSt

)
, (A8)

where we used the optimality conditions

U ′(ct) = w(ST )

ST

St

w(St)
U ′(cT ) (A9)

in the second step and where δW[δSt] denotes the
change in wealth due to the change in the survival
probabilities.2 �

Appendix B. Difference between the subjective
rate of discount and the market rate of interest

We will now briefly show that dropping the assump-
tions that the individual’s subjective rate of discount
equals the market rate of interest and that discount-
ing is constant does not change our main conclusions,
Theorems 2 and 6. If a �= r Theorem 1 becomes:

Theorem A1. Suppose that the decision model of Sec-
tion 3.1 holds except that a �= r. Then, for all p in (0, 1),
consumption in period t increases with the ratio w(p)

p
1+r
1+a

.

t
t
t
e
2
w

b
c
w
v
t

A
r
u
t
t
r

follows because marginal utility then falls at a slower rate
under rank-dependent utility than under expected utility
and, consequently, the decrease in c2 that is required to
ensure that the first-order conditions are fulfilled has to
be larger under rank-dependent utility.

In the multi-period model we will not only assume
that the subjective rate of discount and the market rate
of interest differ, but we will also drop the assumption
that the subjective rate of discount and the market rate
of interest are constant over time. Violations of constant
rate discounting are commonly observed in the empirical
literature. Let at denote the individual’s subjective rate
of discount at time point t and let rt denote the market
rate of interest at time point t with a1 = r1 = 0. Theorem
5 then becomes:

Theorem A5. Suppose that the decision model of Sec-
tion 4.1 holds except that a and r may vary over time and
for all t, at and rt may be distinct. Then, for all t, consump-
tion in period t increases with the ratio w(St )

St

∏ 1+rt
1+at

.

The proof follows from appropriate substitution in
(A4)–(A6). Empirical studies show that at tends to fall
with time leading, ceteris paribus, to an increasing con-
sumption profile over time. It is easily verified that
Theorem 6 is not affected by allowing for non-constant
discounting and dropping the assumption that for all t,
at = rt. Hence, our conclusions about the “pure effect”
of probability distortion on the valuation of survival
risks are not affected either. If power utility in rank-
dependent utility is less concave than power utility in
The proof follows by substituting a for r as the subjec-
ive rate of discount in (A1) and (A2). Theorem A1 shows
hat if the individual’s subjective rate of discount exceeds
he market rate of interest, which is often observed in
mpirical studies on time preference (Frederick et al.,
002) then c2 will fall compared to the situation where
e assumed that a = r.
It is easily verified that Theorem 2 is not affected

y dropping the assumption that a = r. The decrease in
2 resulting if a > r will thus lead to a reduction in the
illingness to pay for increases in the probability of sur-
ival compared with the situation where we assumed
hat a = r.

Because Theorem 2 still holds, Corollary 3 also holds.
s regards Corollary 4, if the power utility function in

ank-dependent utility is less concave than the power
tility function in expected utility then, compared with
he case a = r, the drop in c2, and hence of willingness
o pay, which occurs because a > r will be larger under
ank-dependent utility than under expected utility. This

2 This notation is adopted from Arthur (1981).
expected utility then, in comparison with the situation
where a = at = rt = r, both the decrease in ct, and hence
of willingness to pay, which occurs when at > rt and the
increase in ct and, hence, of willingness to pay, which
occurs when at < rt, will be larger under rank-dependent
utility than under expected utility.

References

Abdellaoui, M., 2000. Parameter-free elicitation of utilities and prob-
ability weighting functions. Management Science 46, 1497–1512.

Arthur, W.B., 1981. The economics of risks to life. American Economic
Review 71, 54–64.

Bergstrom, T.C., 1982. When is a man’s life worth more than his human
capital? In: Jones-Lee, M.W. (Ed.), The Value of Life and Safety.
North-Holland, Amsterdam, pp. 3–26.

Bleichrodt, H., Pinto, J.L., 2000. A parameter-free elicitation of the
probability weighting function in medical decision analysis. Man-
agement Science 46, 1485–1496.

Bleichrodt, H., van Rijn, J., Johannesson, M., 1999. Probability weight-
ing and utility curvature in QALY based decision making. Journal
of Mathematical Psychology 43, 238–260.

Camerer, C.F., 1995. Individual decision making. In: Kagel, J., Roth,
A. (Eds.), The Handbook of Experimental Economics. Princeton
University Press, Princeton, NJ, pp. 587–703.



346 H. Bleichrodt, L. Eeckhoudt / Insurance: Mathematics and Economics 38 (2006) 335–346

Camerer, C.F., 2000. Prospect theory in the wild: evidence from the
field. In: Kahneman, D., Tversky, A. (Eds.), Choices, Values and
Frames. Cambridge University Press, New York, pp. 288–300.

Camerer, C.F., Ho, T.-H., 1994. Nonlinear weighting of probabili-
ties and violations of the betweenness axiom. Journal of Risk and
Uncertainty 8, 167–196.

Chang, F.-R., 1991. Uncertain lifetimes, retirement and economic wel-
fare. Economica 58, 215–232.

Conley, B.C., 1976. The value of human life in the demand for safety.
American Economic Review 66, 45–55.

Diecidue, E., Wakker, P.P., 2002. Dutch books: avoiding strategic and
dynamic complications, and a comonotonic extension. Mathemat-
ical Social Sciences 43, 135–149.

Edwards, W., 1955. The prediction of decisions among bets. Journal
of Experimental Psychology 50, 201–214.

Ehrlich, I., 2000. Uncertain lifetime, life protection, and the value of
life saving. Journal of Health Economics 19, 341–367.

Fox, C.R., Rogers, B.A., Tversky, A., 1996. Options traders exhibit
subadditive decision weights. Journal of Risk and Uncertainty 13,
5–17.

Frederick, S., Loewenstein, G., O’Donoghue, T., 2002. Time discount-
ing and time preference: a critical review. Journal of Economic
Literature 40, 351–401.

Gonzalez, R., Wu, G., 1999. On the form of the probability weighting
function. Cognitive Psychology 38, 129–166.

Hershey, J.C., Schoemaker, P.J.H., 1980. Risk taking and problem con-
text in the domain of losses. Journal of Risk and Insurance 47,
111–132.

Johansson, P.O., 2002. On the definition and age-dependency of the
value of a statistical life. Journal of Risk and Uncertainty 25,
251–263.

Jones-Lee, M.W., Poncelet, A.-M., 1982. The value of marginal and
non-marginal multiperiod variations in physical risk. In: Jones-
Lee, M.W. (Ed.), The Value of Life and Safety. North-Holland,
Amsterdam, pp. 67–80.

Rabin, M., 2000. Risk aversion and expected-utility theory: a calibra-
tion theorem. Econometrica 68, 1281–1292.

Rosen, S., 1988. The value of changes in life expectancy. Journal of
Risk and Uncertainty 1, 285–304.

Samuelson, P., 1937. A note on the measurement of utility. Review of
Economic Studies 4, 155–161.

Selten, R., Sadrieh, A., Abbing, K., 1999. Money does not induce risk
neutral behavior, but binary lotteries do even worse. Theory and
Decision 46, 211–249.

Shepard, D.S., Zeckhauser, R.J., 1984. Survival versus consumption.
Management Science 30, 424–439.

Smith, V.K., Desvousges, W.H., 1987. An empirical analysis of the
economic value of risk changes. Journal of Political Economy 95,
89–114.

Starmer, C., 2000. Developments in non-expected utility theory: the
hunt for a descriptive theory of choice under risk. Journal of Eco-
nomic Literature 28, 332–382.

Thaler, R.H., Rosen, S., 1975. The value of saving a life: evidence
from the labor market. In: Terleckyj, N. (Ed.), Household Produc-
tion and Consumption. National Bureau of Economic Research,
New York.

Tversky, A., Kahneman, D., 1992. Advances in prospect theory: cumu-
lative representation of uncertainty. Journal of Risk and Uncer-
tainty 5, 297–323.

Usher, D., 1973. An imputation to the measure of economic growth for
changes in life expectancy. In: Moss, M. (Ed.), The Measurement of
Economic and Social Performance. National Bureau of Economic
Research, New York.

Wakker, P.P., Deneffe, D., 1996. Eliciting von Neumann–Morgenstern
utilities when probabilities are distorted or unknown. Management
Science 42, 1131–1150.

Wakker, P.P., Thaler, R.H., Tversky, A., 1997. Probabilistic insurance.
Journal of Risk and Uncertainty 15, 7–28.

Wakker, P.P., Timmermans, D.R.M., Machielse, I.A., 2005. The
Effects of Statistical Information on Risk Attitudes and Ratio-
Luce, R.D., 2000. Utility of Gains and Losses: Measurement—
Theoretical and Experimental Approaches. Lawrence Erlbaum
Associates, Inc., Mahwah, NJ.

Prelec, D., 1998. The probability weighting function. Econometrica
66, 497–528.

Quiggin, J., 1981. Risk perception and risk aversion among Aus-
tralian farmers. Australian Journal of Agricultural Economics 25,
160–169.
nal Insurance Decisions. Department of Economics, University of
Amsterdam.

Wu, G., Gonzalez, R., 1996. Curvature of the probability weighting
function. Management Science 42, 1676–1690.

Yaari, M.E., 1965. Uncertain lifetime, life insurance, and the theory of
the consumer. Review of Economic Studies 32, 137–150.

Yaari, M.E., 1987. The dual theory of choice under risk. Econometrica
55, 95–115.


	Survival risks, intertemporal consumption, and insurance: The case of distorted probabilities
	Introduction
	Rank-dependent utility
	Two periods
	Decision problem
	Optimal consumption
	Willingness to pay
	Illustrations
	A comparison between rank-dependent utility and expected utility
	Same degree of utility curvature
	Different degrees of utility curvature


	More than two periods
	Decision model
	Optimal consumption
	Willingness to pay
	A comparison between rank-dependent utility and expected utility
	Same degree of utility curvature
	Different degrees of utility curvature


	Conclusions
	Acknowledgements
	Proofs
	Difference between the subjective rate of discount and the market rate of interest
	References


