A General Purpose Technology Explains the Solow Paradox and Wage Inequality: Appendix

Bas Jacobs* and Richard Nahuis†

Abstract

This note contains the unpublished appendix of Bas Jacobs and Richard Nahuis (2002), “A General Purpose Technology Explains the Solow Paradox and Wage Inequality”, Economics Letters, 74, 243-250. The appendix contains derivations of i) the first-order conditions, ii) equilibrium of the model, iii) the conditions for stability, and iv) the derivation of the slopes of the phase lines.

First-order conditions

Firms maximize the discounted value of profits flows \(\Pi_j \equiv \int_0^\infty \pi_j \exp[-rt] \, dt \), subject to the demand function for their variety, \(X_j = \left(\frac{p_j}{p_X} \right)^{-\varepsilon} X \), and the technology accumulation constraint given in equation (3) in the text. Instantaneous profits are given by: \(\pi_j \equiv p_j X_j - w_L L_j - w_H H_j - r K_j \). Therefore, the current-value Hamiltonian of the optimal control problem for firm \(j \) reads as:

\[
H_j = p_j X_j - w_H H_j - w_L L_j - r K_j + q_j B(1 - u_j) H_j F_j
\]

*University of Amsterdam, Tinbergen Institute, NWO Priority Program ‘Scholar’, and CPB Netherlands Bureau for Economic Policy Analysis. Corresponding author: Faculty of Economics and Econometrics, University of Amsterdam, Roetersstraat 11, 1018 WB, Amsterdam, The Netherlands. Phone: (+31)-20-525 5088. Fax: (+31)-20-525 4310. Email: jacobs@fee.uva.nl.

†CPB Netherlands Bureau for Economic Policy Analysis and KUN Nijmegen. E-mail: r.nahuis@cpb.nl.
Define $\theta \equiv (1-\alpha)\beta$ and $\xi \equiv (1-\alpha)(1-\beta)$. First-order conditions (FOC’s) for an optimum are:

$$\frac{\partial H_j}{\partial L_j} = p_j \frac{\varepsilon - 1}{\varepsilon} \xi A K_j^\alpha F_j^{1-\alpha}(u_j H_j)^{\theta} L_j^{\xi - 1} - w_L = 0$$

$$\frac{\partial H_j}{\partial H_j} = p_j \frac{\varepsilon - 1}{\varepsilon} \theta A K_j^\alpha F_j^{1-\alpha}(u_j H_j)^{\theta} H_j^{-1} L_j^{\xi} - w_H + q_j B(1-u_j)F_j = 0$$

$$\frac{\partial H_j}{\partial u_j} = p_j \frac{\varepsilon - 1}{\varepsilon} \theta A K_j^\alpha F_j^{1-\alpha}(u_j H_j)^{\theta} u_j^{-1} L_j^{\xi} - q_j B H_j F_j = 0$$

$$\frac{\partial H_j}{\partial K_j} = p_j \frac{\varepsilon - 1}{\varepsilon} \alpha A K_j^\alpha L_j^{\xi} - r = 0$$

$$\frac{\partial H_j}{\partial F_j} = p_j \frac{\varepsilon - 1}{\varepsilon} (1-\alpha) A K_j^\alpha F_j^{-\alpha}(u_j H_j)^{\theta} L_j^{\xi} + q_j B(1-u_j)H_j = r q_j - \dot{q}_j$$

in addition to the transversality condition:

$$\lim_{t \to \infty} F_j \exp\left(-\int_0^t r(v)dv\right) = 0$$

Equilibrium

The second and third FOC’s give the no-arbitrage condition for the allocation of time of high-skilled workers in the production of goods and learning in the text.

The differential equation for $R \equiv F/K$ can be obtained using the economy’s resource constraint - after imposing symmetric equilibrium:

$$\frac{\dot{R}}{R} = B(1-u)H - spA R^{1-\alpha}(uH)^{\theta} L^{\xi}$$

The derivation of the differential equation describing u requires two additional steps. First, the no-arbitrage condition of high-skilled workers can be differentiated with respect to time to arrive at:

$$\alpha \frac{\dot{R}}{R} + (1-\theta) \frac{\dot{u}}{u} = -\frac{\dot{q}}{q}$$
Second, we can substitute the first term in the last FOC out by rewriting the no-arbitrage condition:

\[(1 - \alpha)AR^{-\alpha}(uH)^\theta L^\xi = \frac{1 - \alpha}{\theta} qBuH\]

Using the last three results we obtain the differential equation for \(u\):

\[\frac{\dot{u}}{u} = \frac{1 - \alpha}{\theta} BuH + \frac{1 - \alpha}{1 - \theta} BH + \frac{\alpha(1 - sp)}{\theta - 1} AR^{1-\alpha}(uH)^\theta L^\xi\]

Equilibrium follows by setting \(\frac{\dot{u}}{u} = 0\) and \(\frac{\dot{R}}{R} = 0\) and solving for \(u^*\) and \(R^*\).

Stability

The stability of the equilibrium can be checked by evaluating the determinant of Jacobian matrix \(J\) at the equilibrium \(E\). The four partial derivatives of \(J\) at \(E\) are:

\[\frac{\partial \dot{R}}{\partial R} \bigg|_E = -(1 - \alpha)B(1 - u^*)H < 0\]

\[\frac{\partial \dot{R}}{\partial u} \bigg|_E = -BHR^*(1 + \theta(1 - u^*/u^*)) < 0\]

\[\frac{\partial \dot{u}}{\partial u} \bigg|_E = 2 \left(\frac{1 - \alpha}{\theta}\right) BHu^* + \left(\frac{1 - \alpha}{1 - \theta}\right) BH - (1 + \theta) \left(\frac{(1 - \alpha)}{\theta} BHu^* + \frac{(1 - \alpha)}{(1 - \theta)} BH\right)\]

\[= \frac{1 - \alpha}{\theta} BHu^* - \frac{\theta \phi}{u^*}\]

\[\frac{\partial \dot{u}}{\partial R} \bigg|_E = -(1 - sp) \left(\frac{1 - \alpha}{1 - \theta}\right) \frac{R^*u^*}{R^*} < 0\]

where \(\phi \equiv ((1 - \alpha)/\theta) BHu^* + ((1 - \alpha)/(1 - \theta)) BH\). The equilibrium is saddle-point stable if \(\partial \dot{u}/\partial u > 0\). Then, the determinant of the Jacobian is negative. This will be the case if:

\[\frac{1 - \alpha}{\theta} BHu^* - \frac{\theta \phi}{u^*} > 0\]

substitution of \(\phi\) gives:

\[u^* > \left(\frac{\theta}{1 - \theta}\right)^2\]
Slopes phase-lines

The slopes of the curves in figure 1 are derived by totally differentiating the $\dot{R} = 0$ and $\dot{u} = 0$ lines with respect to R and u. The $\dot{R} = 0$ locus is downward sloping:

$$\frac{du}{dR}|_{\dot{R}=0} = -\frac{u(1-\alpha)/R}{\theta + u/(1-u)} < 0$$

The $\dot{u} = 0$ locus is upward sloping:

$$\frac{du}{dR}|_{\dot{u}=0} = \frac{(1-\alpha)\phi/R}{(1-\alpha)BH/\theta - \theta\phi/u} > 0$$

The denominator is positive as a consequence of the stability condition, i.e. when $u^* > ((\theta/(1-\theta))^2$.
