Should the government stimulate enrolment in science and engineering studies?

Joëlle Noailly, Dinand Webbink & Bas Jacobs

CPB Netherlands Bureau for Economic Policy Analysis, PO Box 80510, 2508GM, The Hague, the Netherlands
Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands

Available online: 19 Oct 2010

To cite this article: Joëlle Noailly, Dinand Webbink & Bas Jacobs (2011): Should the government stimulate enrolment in science and engineering studies?, Applied Economics Letters, 18:4, 371-375

To link to this article: http://dx.doi.org/10.1080/13504851003652385

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
Should the government stimulate enrolment in science and engineering studies?

Joëlle Noaillya,*, Dinand Webbinka and Bas Jacobsb

aCPB Netherlands Bureau for Economic Policy Analysis, PO Box 80510, 2508GM, The Hague, the Netherlands
bErasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands

In many countries there is a deep concern about shortages of Science and Engineering workers (S&E). This article focuses on the effectiveness of policies aimed at stimulating the supply of S&E workers in the Netherlands. Despite the ‘common wisdom’ of severe and increasing shortages, we do not find evidence for a tight labour market of S&E workers. Instead, the data suggest that S&E workers have become less scarce since 1996. Stimulating enrolment in S&E studies may not be an effective policy for increasing R&D activity in the Netherlands because the majority of Dutch S&E freshmen do not end up working in R&D. They drop out during their S&E study or choose other jobs. In addition, the internationalization of the market for S&E workers tends to counter the effects of supply-side policies because the growing supply of foreign S&E graduates puts downward pressure on wages. As a result, demand-side policies may be more effective because they are directly targeted at fostering R&D.

I. Introduction

In many countries there is a deep concern about the supply of Science and Engineering (S&E) graduates. Employers regularly voice concerns about current or future shortages of S&E graduates and occasionally threaten to relocate R&D activity to other countries where the supply is more abundant. As formulated in the Lisbon Agenda, the European Union has set targets to increase the number of scientists to 700 000 in 2010. Many countries have translated these targets in national programs to increase the supply of S&E graduates. For instance, the Dutch government launched the ‘Delta plan beta/technology’ aimed at increasing the number of S&E graduates by 15% in 2010.

This article focuses on the effectiveness of policy interventions aimed at increasing the supply of S&E workers. Such policies raise two main questions: (1) Is there a shortage of S&E workers? and (2) how does stimulating enrolment in S&E studies contribute to increasing R&D activity? This article addresses these two questions for the case of the Netherlands.

Several studies have addressed the problem of shortages of scientists and engineers. Freeman (2005) showed that in the United States the job market has worsened for young workers in S&E fields relative to many other high-level occupations. A recent study compares the wages of S&E graduates with the wages of other higher educated graduates for various countries (Machin and McNally, 2007). They found that S&E studies had the highest returns in Britain, Germany and the United States but not in France. Goolsbee (1998) and Romer (2000) presented arguments for supply-side policies. Goolsbee (1998)
showed that promoting R&D activities will result in higher wages of R&D workers if there is a structural shortage of R&D personnel. Romer (2000) suggested that innovation policy in the United States has erred by subsidizing the private sector demand for scientists and engineers, whereas the existing institutional arrangements in higher education seem to limit the supply response.

The remainder of the article is organized as follows. Section II gives some background on the Dutch situation. Section III shows the results of the empirical analysis of the changes in the labor market of S&E workers. Section IV discusses the economic arguments for policy intervention in the labour market for S&E graduates. Section V gives the conclusions.

II. Background on the S&E Market in the Netherlands

Shortages of scientists and engineers have been on the Dutch policy agenda for many years. International comparisons show that the supply of S&E graduates in the Netherlands is very low. With approximately seven S&E graduates per 1000 of population aged 20–29, the Netherlands scores much lower than countries such as the United Kingdom, France and Ireland, which have more than 20 graduates per 1000 of population (European Commission, 2003). On the contrary, the share of S&E graduates in higher education in the Netherlands is equal to the share in the United States. The Netherlands, with 20% of freshmen enrolling in S&E fields, scores together with the United States, Denmark and Norway below the OECD average of 26% and far behind, for instance, Germany (33%) and South-Korea (42%) (OECD, 2004).

Since 1975, the number of students in higher education has more than doubled. All the trends in higher education suggest a shift of interest of first-year students away from S&E fields towards social sciences and in particular economics. In fact, a closer look at the figures shows that the lower shares of S&E graduates mainly originate from a composition effect because of the increased enrolment of female students. Changes are much smaller if we consider male and female graduates separately. The total share of male S&E graduates has dropped from 32% in 1975 to 30% in 2001. For female S&E graduates this share remained stable at 10%.

S&E graduates receive an education that largely prepares them for R&D jobs. R&D expenditures in the Netherlands are relatively stable and low, reflecting a specialization of the country away from R&D-intensive sectors (pharmacy, computers, etc.). Since the beginning of the 1980s, the Netherlands spends approximately 1.9% of Gross Domestic Product (GDP) on public and private R&D.

In December 2003, the Dutch government published a set of actions in the ‘Delta plan beta/technology’, which aims at a 15% increase in enrolment in S&E fields by 2007 and a 15% increase in outflow of S&E graduates in 2010. Some of the core measures include stimulating enrolment in S&E field with lower tuition fees, developing projects aimed to raise interest for technology and to enhance the graduation rate in S&E studies, promoting research jobs and relieving barriers to immigration for knowledge workers.

III. The Labour Market Position of S&E Workers in the Netherlands

We investigate whether the Dutch labour market for S&E workers is very tight and whether recent developments suggest a worsening of the shortage of S&E graduates. We compare the wages of S&E graduates with the wages of other higher educated graduates in the Netherlands using the data from the Dutch Wage Structure Survey (LSO). The Wage Structure Survey contains individual data on wages, education, industry, job characteristics, gender and age. We use data from the surveys of 1979, 1985, 1996, 1997 and 2002 and focus on individuals between 16 and 64 years.

We estimate standard Mincer wage equations in which the logarithm of the hourly wage is the dependent variable and the explanatory variables are age, age-squared and type of higher education. We present estimation results on the sample of male graduates. We only focus on the evolution of relative wages across graduates and not on the evolution of absolute wages. Indeed, it could be that wages for S&E graduates have increased over the years. However, if wages of other graduates have increased faster, this reflects that the position of S&E graduates on the labour market has deteriorated compared to other graduates. Table 1 shows the estimated wage differential of male S&E graduates at the university level and at the Higher Professional Level (HPE).

The top panel of Table 1 compares the average wages of S&E graduates with the wages of all other graduates. At the university level S&E graduates earn on average 2–3% more than other graduates in 1996 and 1997. After 1997 there is no significant difference between the wages of S&E graduates and other graduates. At the HPE level the relative position of S&E graduates improved strongly in the beginning of the 1980s. However, after 1985 this difference declined

1S&E fields of study include life sciences, physical sciences, mathematics and statistics, computing and engineering.
and S&E graduates earn on average 7% more than other HPE graduates.

The bottom panel of Table 1 compares the wages of S&E graduates with the wages of economic graduates. This comparison might be more informative because students in S&E studies and students in economics by and large come from the same pool of high-school graduates. In addition, in recent years the supply of economic graduates has strongly increased whereas the supply of S&E graduates has gone down. In 1979 and 1985, there was no significant difference in the hourly wages of S&E and economic graduates. In later years, however, S&E graduates earn less per hour than their economic counterparts, up to 13% less in 2002. Hence, wages for economists have grown faster over the last 20 years than the wages for scientists and engineers.²

A separate analysis for graduates working in the private sector shows that the relative wage position of S&E graduates in R&D compared to all other graduates deteriorated even more than the wage position of other S&E graduates. Looking at the wage differences of S&E graduates in R&D compared to economic graduates, we find similar patterns as in Table 1.

Many factors might play a role in the observed wage difference between S&E graduates and other graduates. For instance, S&E students may ‘have more difficulty in negotiating high wages’. However, as many differences between S&E graduates and other graduates, such as the ability to negotiate wages, will probably not change over time, it seems not likely that selectivity is important for explaining the observed changes in wage differentials. Changes in demand and supply of S&E graduates seem to be the most plausible explanation for our findings. Different specifications (on the sample of females only, excluding graduates with a PhD degree, including fringe benefits) yield similar results (see Noailly et al., 2005, for a detailed description of the results).

Using data from the Dutch Labour Survey, we also looked at a large range of labour market indicators: wages, vacancies, unemployment rates, labour market participation and weekly working hours. We find that none of the labor market indicators suggests a tight labour market for S&E graduates. Overall, our results show that the wage position of S&E graduates has deteriorated compared to other graduates. This goes counter the ‘common wisdom’ of scarcity of S&E graduates in the Netherlands.

IV. Implications for Policies Aiming to Stimulate Enrolment in S&E Studies

To increase R&D activity, the government can choose between supply-side or demand-side policies. Demand-side policies are directly targeted at increasing R&D activity (through subsidies, tax credits for R&D personnel, etc.), whereas supply-side policies increase the number of scientists and engineers (education subsidies). The effectiveness of policies to promote R&D

²For 1996 and later years, we made a distinction between fields of S&E studies. For all fields of S&E education, the relative wage position has deteriorated since 1996 (not shown in table).
depends on (1) how much the equilibrium level of R&D responds to policies, that is, whether the elasticities of demand and supply for R&D are not equal to 0, and (2) the extent of government failures.

The supply elasticity of R&D refers to how much the supply of R&D workers increases when the wages for R&D workers increase relative to other occupations. As such, there is no credible evidence on the elasticity of the enrolment in S&E studies. A recent study by Ryoo and Rosen (2004) shows that the supply of S&E workers adjusts with some delay to changes in relative wages suggesting that the elasticity of supply of S&E graduates is not equal to 0. In the Netherlands, the price elasticity of the demand for higher education seems quite low (CPB, 2003) although evidence on whether this low elasticity also applies to subsidies which aim to make S&E education more attractive relative to other studies is lacking. Regarding the demand elasticity of R&D, Cornet (2001) found that the demand for R&D is to a certain extent quite elastic. A unit demand elasticity of R&D with respect to the wages of R&D seems empirically plausible. Then a 1% decrease in wage costs generates a 1% increase in demand for R&D workers.

The effectiveness of demand- and supply-side policies also crucially depends on the government failures involved in both subsidies on the wage costs for R&D workers and subsidies on S&E education. Based on empirical evidence, it is not clear which policy suffers most from government failure. There is, however, one important difference. Demand-side policies are directly targeted at increasing R&D whereas supply-side policies, such as school projects aimed at changing educational decisions, are not. Many steps have to be taken before supply-side policies translate into an increase of R&D. Figure 1 illustrates the supply chain of R&D production from students’ enrolment to R&D personnel. Along this chain many uncertainties arise: What is the effect of stimulating enrolment on actual enrolment? How many of the newly attracted students will drop out? And, which share of graduates ends up in an R&D job? Using some descriptive statistics, we can get some insights on the extent of the ‘leakage’ along the supply chain. Indeed, only one out of five first-year students enrol in S&E fields and approximately two-thirds of freshmen in S&E studies eventually graduates. Among these graduates, only two out of five actually end up working in R&D, whereas the remaining students choose other occupations. In 2002, 34% of all university S&E graduates aged 25–55 worked in core R&D occupations. This is almost 7% points less than in 1993.

These steps suggest that subsidies on enrolment in S&E studies may not be well targeted for increasing R&D activity. Indeed, an appreciable share of subsidies aimed at increasing R&D production might leak away along the supply chain. Demand-side policies, in contrast, may be more effective. They focus directly on an increase in R&D activity and can be used for attracting Dutch or foreign S&E workers or for capital investments. In addition, the time between the subsidy and the increase in R&D is much smaller for demand-side policies than for supply-side policies. For the latter to be effective, it takes at least several years because graduating from S&E studies takes time. Demand-side policies can increase not only the R&D activity but also the attractiveness of S&E studies.

Another reason why supply-side subsidies may be less effective than demand-side subsidies is because of the internationalization of the labour market for S&E workers. Although foreign S&E workers currently represent only a small share of total R&D personnel in the Netherlands (4% in 2000, European Commission, 2003), this share is increasing very rapidly (7.3% per year over the 1994–2000 period, above the EU average of 5.8%). In general, opening up international labour markets for R&D workers will make it easier for firms to actually find such workers if demand increases. This increases the effectiveness of a subsidy on the demand for R&D. Another consequence of the internationalization is that the domestic S&E workers have to compete with a growing influx of much cheaper foreign S&E workers, which makes it less attractive to enrol in S&E studies, and this undermines the effectiveness of supply-side policies. If internationalization of R&D production causes the market clearing wages for R&D workers to

![Fig. 1. The supply chain from university or higher vocational education to R&D personnel](source: Statistics Netherlands, own computations using the Dutch Labour Survey 2002.)
fall below that of other professions, the only effective way to stimulate S&E graduates to choose R&D jobs is to subsidize those jobs. This basically comes down to a demand-side subsidy.

V. Conclusions

In this article, we discussed the potential effectiveness of stimulating enrolment in S&E studies, as the Dutch government currently is doing. Our conclusion is that this may not be an effective policy for increasing R&D activity. First, we find no evidence for shortages of S&E workers in the Netherlands. None of the labour market indicators suggests a very tight labour market for S&E graduates in the recent past. Instead, the data suggest that the labour market position of S&E graduates has been weakening since 1996. Goolsbee (1998) and Romer (2000) showed that subsiding R&D is not effective if the supply of S&E workers is limited. However, in the Dutch case the supply of S&E workers does not seem to be the problem. Second, supply-side policies may suffer from appreciable government failure. There might be a large ‘leakage’ of subsidies because a substantial number of S&E graduates does not end up working in R&D. Third, the internationalization of the market for S&E workers may also counter the effects of supply-side policies because the growing supply of foreign S&E graduates puts downward pressure on wages. As a consequence, this suggests that policies to foster R&D in the Netherlands directly (demand-side policies) may be more effective than supply-side policies.

Acknowledgements

We gratefully acknowledge comments from Free Huizinga, Hessel Oosterbeek, Marc Pomp, Maarten Cornet and Rob Euwals and participants at seminars at CPB and the Ministry of Finance.

References