
Lagrangian Relaxation

Ş. İlker Birbil

March 6, 2016

Our general optimization problem in this lecture is in the maximization form:

maximize f(x)
subject to x ∈ F ,

where
F = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m}

with f : Rn → R and gi : Rn → R for i = 1, . . . ,m. The famous mathematician Lagrange came up with a
neat idea in 1785. In a nutshell, Lagrange suggested to remove the difficult constraints from the problem
and add them to the objective function with some multipliers to obtain a relaxed problem. Using this idea,
we can devise a mechanism to solve a series of simpler problems to obtain better and better approximations.
Later, this approach evolved into, what is now known as, the Lagrangian relaxation (Nocedal and Wright,
2006).

Let λ1, . . . , λm be the Lagrange multipliers associated with the m constraints in our general problem.
Then, the Lagrangian function becomes

L(x, λ) = f(x)−
m∑
i=1

λigi(x),

where λ is the vector of m Lagrange multipliers. This leads us to the Lagrangian dual objective function

ZL(λ) = sup
x∈Rn

L(x, λ).

Note for any x̄ ∈ F and λ ≥ 0 that the Lagrangian problem satisfies

ZL(λ) = sup
x∈Rn

{f(x)−
m∑
i=1

λigi(x)} ≥ f(x̄)−
m∑
i=1

λigi(x̄) ≥ f(x̄).

If we further define the Lagrangian dual problem

minimize ZL(λ)
subject to λi ≥ 0, i = 1, · · · ,m,

then we immediately have our weak duality

min{ZL(λ) : λi ≥ 0, i = 1, · · · ,m} ≥ max{f(x) : gi(x) ≥ 0, i = 1, . . . ,m}.

Here is one crucial observation: The Lagrangian function is linear in λi and hence, the dual objective
function is always convex in λi as it is the supremum of a collection of linear function.

1



1 Applying Lagrangian Relaxation in Integer Programming

Like the use of linear programming (LP) relaxation in integer programming (IP), Lagrangian relaxation can
also provide a bound for the overall integer problem. As we have discussed in the previous lecture, in a
branch and bound application, tight bounds lead to fast pruning of the search tree. For certain problems, we
can indeed obtain tighter bounds with the Lagrangian relaxation than those obtained with the LP relaxation.
This is, in fact, one of the most important applications of the Lagrangian relaxation.

Consider our example from the previous lecture:

maximize x2
subject to −2x1 + 2x2 ≤ 1,

2x1 + 2x2 ≤ 7,
x1, x2 ≥ 0,
x1, x2 integers.

The optimal objective function value of the LP relaxation is 2.0 with the optimal solution (1.5, 2.0)ᵀ.
Let us now remove the first set of constraints and, with a nonnegative multiplier λ, create the Lagrangian
problem given by

maximize x2 + λ(1 + 2x1 − 2x2)
subject to 2x1 + 2x2 ≤ 7,

x1, x2 ≥ 0,
x1, x2 integers.

If we set λ = 0.25, then the optimal objective function value of the Lagrangian problem is 1.75. This
is clearly a tighter value than the LP relaxation bound. When we consider the optimal solutions of the
Lagrangian problem, we have

(3, 0)ᵀ, (2, 1)ᵀ, (0, 3)ᵀ, (1, 2)ᵀ.

Note that the first two solutions are also feasible for the original integer problem, and in fact, the second
solution is its optimal.

This elementary example leaves us with three fundamental questions:

1. Which constraints should be removed from the original problem to obtain the Lagrangian dual objective
function?

2. What are the good values of the Lagrange multipliers?

3. How can we obtain feasible (incumbent) solutions for the original problem?

First, we need to formalize our discussion. Suppose that we start with the IP problem

ZP = maximize cᵀx
subject to Ax ≤ b,

Dx ≤ d,
x ≥ 0 and integer,

where A is m× n and D is k × n. We remove the first set of constraints and add them to the objective
function with the multiplier vector λ ∈ Rm

+ , the resulting Lagrangian dual objective function is given by

ZL(λ) = maximize cᵀx+ λᵀ(b−Ax)
subject to Dx ≤ d,

x ≥ 0 and integer.

We assume that this problem is relatively easy to solve. Of course, for the tightest bound, we want to
solve the Lagrangian dual problem

ZL = min{ZL(λ) : λ ≥ 0}.
Recall that Lagrangian objective function is convex in λ. Moreover, this function is differentiable every-

where except at those points where the Lagrangian problem has multiple optimal solutions. Therefore, we
cannot directly work with the gradients but instead make use of the subgradients.

2



2 Subgradient Method

Given λ(k) at iteration k, we need to calculate the new iterate λ(k+1). The subgradient method simply states
that the new iterate should be along the direction of the subgradient with a properly selected step length,
αk. Formally,

λ(k+1) = max{0, λ(k) − αk(b−Ax(k))},

where x(k) is the optimal solution of ZL(λ(k)).
We can best illustrate the method on an example (Fisher, 1985):

ZP = maximize 16x1 + 10x2 + 4x4
subject to 8x1 + 2x2 + x3 + 4x4 ≤ 10,

x1 + x2 ≤ 1,
x3 + x4 ≤ 1,
0 ≤ x ≤ 1 and integer.

If we remove the first constraint with multiplier λ ≥ 0, then the corresponding Lagrangian dual objective
function becomes

ZL(λ) = maximize (16− 8λ)x1 + (10− 2λ)x2 + (0− λ)x3 + (4− 4λ)x4 + 10λ
subject to x1 + x2 ≤ 1,

x3 + x4 ≤ 1,
0 ≤ x ≤ 1 and integer.

We shall first try the subgradient method with different αk values. First we will keep it constant, then
we will reduce each αk with a factor of αk−1.

Homework 2: Check that the optimal value of λ is 1 and the optimal objective function value of the
integer problem is 16.

In [1]: numiter = 10; % Just 10 iterations

Aineq = [1, 1, 0, 0; ...

0, 0, 1, 1];

bineq = [1; 1];

options = cplexoptimset; options.Display = ’off’; ctype = ’IIII’;

% Constant alphak

lambdak = 0; % Initial value

alphak = 1.0; % Initial value

lambdavals = zeros(numiter,1);

for iter=1:numiter

c = [8*lambdak - 16; 2*lambdak - 10; lambdak; 4*lambdak - 4];

xk = cplexmilp(c, Aineq, bineq, [], [], [], [], [], zeros(4,1), ones(4,1), ...

ctype, [], options);

b_Ax = 10 - [8, 2, 2, 4]*xk;

lambdak = max(0, lambdak - alphak*b_Ax);

lambdavals(iter) = lambdak;

end

plot(lambdavals, ’ro-’); hold on;

% alphak = alphak/2

lambdak = 0;

alphak = 1.0;

lambdavals = zeros(numiter,1);

for iter=1:numiter

c = [8*lambdak - 16; 2*lambdak - 10; lambdak; 4*lambdak - 4];

xk = cplexmilp(c, Aineq, bineq, [], [], [], [], [], zeros(4,1), ones(4,1), ...

3



ctype, [], options);

b_Ax = 10 - [8, 2, 2, 4]*xk;

lambdak = max(0, lambdak - alphak*b_Ax);

lambdavals(iter) = lambdak;

alphak = alphak/2.0;

end

plot(lambdavals, ’b*-’);

% alphak = alphak/3

lambdak = 0;

alphak = 1.0;

lambdavals = zeros(numiter,1);

for iter=1:numiter

c = [8*lambdak - 16; 2*lambdak - 10; lambdak; 4*lambdak - 4];

xk = cplexmilp(c, Aineq, bineq, [], [], [], [], [], zeros(4,1), ones(4,1), ...

ctype, [], options);

b_Ax = 10 - [8, 2, 2, 4]*xk;

lambdak = max(0, lambdak - alphak*b_Ax);

lambdavals(iter) = lambdak;

alphak = alphak/3.0;

end

plot(lambdavals, ’g+-’); xlabel(’Iterations (k)’); ylabel(’\lambda^{(k)}’);

legend(’\alpha_k = 1’, ’\alpha_k = \alpha_{k-1}/2’, ’\alpha_k = \alpha_{k-1}/3’, ...

’Location’,’northoutside’, ’Orientation’, ’horizontal’);

ax = gca; ax.XTick = 0:numiter; grid on;

This plot shows that the step length values αk play an important role in convergence. When the step
lengths are constant, then the λ(k) values oscillate between 0 and 2. If we halve the step length at each
iteration, then we converge to the optimal value of λ = 1. On the other hand, if we reduce the step length
more aggresively and divide the step length by 3 at each iteration, then λ(k) values converge to a nonoptimal
value.

In fact, Held et. al (1974) have shown the sufficient conditions for the step lengths to obtain convergence.
As k →∞, if

4



αk → 0 and

k∑
j=1

αj →∞,

then ZL(αk) converges to the optimal value of the Lagrangian dual problem, ZL.
A well-known formula that works in practice is given by

αk =
βk(ZL(λk)− Z∗)
‖b−Ax‖2

,

where βk ∈ (0, 2] and Z∗ is the best known feasible solution for the original problem. Usually, βk is set
to 2 and then halved, if ZL(λk) does not change for several iterations. We can try it.

In [2]: lambdak = 0;

alphak = 1.0;

Zstar = 0; % Initial value

betak = 2; % Initial value

Zstarvals = zeros(numiter,1);

lambdavals = zeros(numiter,1);

ZLkprev = realmax;

for iter=1:numiter

c = [8*lambdak - 16; 2*lambdak - 10; lambdak; 4*lambdak - 4];

[xk, ZLk] = cplexmilp(c, Aineq, bineq, [], [], [], [], [], zeros(4,1), ones(4,1), ...

ctype, [], options);

ZLk = -ZLk + 10*lambdak;

if (ZLkprev < ZLk)

rediter = rediter + 1;

else

rediter = 1;

end

ZLkprev = ZLk;

b_Ax = 10 - [8, 2, 2, 4]*xk;

lambdak = max(0, lambdak - alphak*b_Ax);

lambdavals(iter) = lambdak;

if (b_Ax >= 0)

ZL = [16, 10, 0, 4]*xk;

if (ZL > Zstar)

Zstar = ZL;

end

end

if (rediter == 3) % Objective does not decrease for 3 consecutive iterations

betak = betak/2.0;

rediter = 1;

end

alphak = (betak*(ZLk - Zstar))/(b_Ax^2);

Zstarvals(iter) = Zstar;

end

subplot(2,1,1);

plot(Zstarvals, ’ro-’); xlabel(’Iterations (k)’); ylabel(’Z*’);

ax = gca; ax.XTick = 0:numiter; grid on;

subplot(2,1,2);

plot(lambdavals, ’ro-’); xlabel(’Iterations (k)’); ylabel(’\lambda^{(k)}’);

ax = gca; ax.XTick = 0:numiter; grid on;

5



3 Lagrangian Relaxation vs. LP Relaxation

Note that we still solve an IP to evaluate the Lagrangian dual objective function for a given λ. To avoid facing
potentially difficult IP problems, one may consider leaving only those constraints so that the LP relaxation
of the Lagrangian dual objective function will return integral solutions. Unfortunately, this straightforward
idea does not help because in that case, the Lagrangian relaxation bound (ZL) is the same as the bound
that we will obtain by solving the LP relaxation of the original problem (ZLP ).

Here is why:

ZL = min{ZL(λ) : λ ≥ 0}
= min{max{cᵀx+ λᵀ(b−Ax) : Dx ≤ d, x ≥ 0 and integer}}
≤ min{max{cᵀx+ λᵀ(b−Ax) : Dx ≤ d, x ≥ 0}}

If we denote the dual variables associated with the constraints Dx ≤ d by µ ∈ Rk, then we can take the
dual of the inner LP problem and obtain

ZL ≤ min{min{λᵀb+ µᵀd : λᵀA+ µᵀD ≥ c, λ ≥ 0, µ ≥ 0}} = max{cᵀx : Ax ≤ b,Dx ≤ d} = ZLP ,

where the last equality follows from taking the LP dual once more.
The derivation above shows that if the Lagrangian objective function does not change after we remove

the integrality constraints, then ZL = ZLP . To have a tighter bound with the Lagrangian dual problem
(ZL < ZLP ), we need to put an effort to deal with the IP problem.

This is indeed the case with our example. Both the Lagrangian relaxation bound and the LP relaxation
bound are 18.

In [3]: lambdak = 0;

alphak = 1.0;

zlkvals = zeros(numiter,1);

for iter=1:numiter

c = [8*lambdak - 16; 2*lambdak - 10; lambdak; 4*lambdak - 4];

[xk, ZLk] = cplexmilp(c, Aineq, bineq, [], [], [], [], [], zeros(4,1), ones(4,1), ...

ctype, [], options);

b_Ax = 10 - [8, 2, 1, 4]*xk;

6



lambdak = max(0, lambdak - alphak*b_Ax);

zlkvals(iter) = -ZLk + 10*lambdak;

alphak = alphak/2.0;

end

plot(zlkvals, ’b*-’); xlabel(’Iterations (k)’); ylabel(’Z_L(\lambda^{(k)})’);

ax = gca; ax.XTick = 0:numiter; grid on;

%LP relaxation of the original problem

Aineqlp = [8, 2, 2, 4; ...

1, 1, 0, 0; ...

0, 0, 1, 1];

bineqlp = [10; 1; 1]; clp = [-16; -10; 0; -4];

[x, fval] = cplexlp(clp, Aineqlp, bineqlp, [], [], zeros(4,1), ones(4,1), [], options);

-fval

ans =

18

Well, this is discouraging. All our efforts to use the Lagrangian relaxation seems worthless. This occured
because our subproblems to evaluate the Lagrangiad dual objective function were too easy to solve. How
about an alternative way to apply the Lagrangian relaxation. This time, we will remove the second and the
third constraints by using two Lagrange multipliers λ ≥ 0 and γ ≥ 0. Then, the resulting Lagrangian dual
objective function becomes

ZL(λ, γ) = maximize (16− λ)x1 + (10− λ)x2 + (0− γ)x3 + (4− γ)x4 + λ+ γ
subject to 8x1 + 2x2 + x3 + 4x4 ≤ 10,

0 ≤ x ≤ 1 and integer.

Note that this problem is different than our previous relaxation and its LP relaxation does not necessarily
return an integer solution. In fact, this is the well-known knapsack problem. Although the most general
knapsack problem is very difficult to solve, for moderately large problems, it can be solved efficiently using
dynamic programming. To keep our discussion simple, we shall solve the knapsack problem with an IP solver
here.

7



In [4]: numiter = 15;

lambdak = 0; gammak = 0; alphak = 1.0;

zlkvals = zeros(numiter,1);

Aineq = [8, 2, 1, 4]; bineq = 10;

for iter=1:numiter

c = [lambdak - 16; lambdak - 10; gammak; gammak - 4];

[xk, ZLk] = cplexmilp(c, Aineq, bineq, [], [], [], [], [], zeros(4,1), ones(4,1), ...

ctype, [], options);

b_Ax = 1 - [1, 1, 0, 0]*xk;

lambdak = max(0, lambdak - alphak*b_Ax);

b_Ax = 1 - [0, 0, 1, 1]*xk;

gammak = max(0, gammak - alphak*b_Ax);

zlkvals(iter) = -ZLk + lambdak + gammak;

end

plot(zlkvals, ’b*-’); xlabel(’Iterations (k)’); ylabel(’Z_L(\lambda^{(k)})’);

ax = gca; ax.XTick = 0:numiter; grid on;

fprintf(’The last Lagrangian solution = ’); disp(xk’);

The last Lagrangian solution = 1 0 0 0

Relaxing the second and third constraints has paid off. We have a much tighter bound value of 16, and
the very last Lagrangian solution is the optimal solution of the original problem.

4 References

1. Nocedal, J. and S. J. Wright (2006). Numerical Optimization, 2nd Edition, New York:Springer.

2. Fisher, M. (1985). An applications oriented guide to Lagrangian relaxation, Interfaces 15:2, 10-21.

3. Held, M. H., Wolfe, P. and H. D. Crowder (1974). Validation of subgradient optimization, Mathematical
Programming, 6:1, 62-88.

8


	Applying Lagrangian Relaxation in Integer Programming
	Subgradient Method
	Lagrangian Relaxation vs. LP Relaxation
	References

