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Abstract. In survey statistics, simulation studies are usually performed
by repeatedly drawing samples from population data. Furthermore, pop-
ulation data may be used in courses on survey statistics to support the
theory by practical examples. However, real population data containing
the information of interest are in general not available, therefore syn-
thetic data need to be generated. Ensuring data confidentiality is thereby
absolutely essential, while the simulated data should be as realistic as
possible. This paper briefly outlines a recently proposed method for gen-
erating close-to-reality population data for complex (household) surveys,
which is applied to generate a population for Austrian EU-SILC (Euro-
pean Union Statistics on Income and Living Conditions) data. Based on
this synthetic population, confidentiality issues are discussed using five
different worst case scenarios. In all scenarios, the intruder has the com-
plete information on key variables from the real survey data. It is shown
that even in these worst case scenarios the synthetic population data are
confidential. In addition, the synthetic data are of high quality.

Keywords: Survey Statistics, Synthetic Population Data, Data Confi-
dentiality

1 Introduction

In the analysis of survey data, variability due to sampling, imputation of missing
values, measurement errors and editing must be considered. Statistical methods
thus need to be evaluated with respect to the effect of these variabilites on point
and variance estimates. A frequently used strategy to adequately measure such
effects under different settings is to perform simulation studies by repeatedly
drawing samples from population data (possibly using different sampling de-
signs) and to compare the estimates with the true values of the sample frame.

? This work was partly funded by the European Union (represented by the European
Commission) within the 7th framework programme for research (Theme 8, Socio-
Economic Sciences and Humanities, Project AMELI (Advanced Methodology for
European Laeken Indicators), Grant Agreement No. 217322). For more information
on the project, visit http://ameli.surveystatistics.net.
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Evaluating and comparing various statistical methods within such a design-based
simulation approach under different close-to-reality settings is daily work for sur-
vey statisticians and has been done, e.g., in the research projects DACSEIS [1],
EurEdit [2] and AMELI [3].

Furthermore, population data may be used for teaching courses on survey
statistics. Realistic examples may help students to better understand issues in
survey sampling, e.g., regarding different sampling designs.

Since suitable population data are typically not available, it is necessary to
generate synthetic data. The generation of population microdata for selected
surveys as a basis for Monte Carlo simulation studies is described in [1, 4]. These
procedures were extended in [3, 5] to simulate close-to-reality population data
for more complex surveys such as EU-SILC (European Union Statistics on In-
come and Living Conditions). However, confidentiality issues of such synthetic
population data are only briefly addressed in these contributions.

Generation of population microdata for simulation studies is closely related to
the field of microsimulation [6], yet the aims are quite different. Microsimulation
models attempt to reproduce the behavior of individual units within a population
for policy analysis purposes and are well-established within the social sciences.
Nevertheless, they are highly complex and time-consuming. On the other hand,
synthetic population microdata for simulation studies in survey statistics are
used to evaluate the behavior of statistical methods. Thus fast computation is
preferred to over-complex models.

Another approach towards the generation of microdata is to use multiple
imputation to create fully or partially synthetic data sets, as proposed in [7, 8].
This approach is further discussed in [9–11]. However, these contributions do not
consider some important issues such as the generation of categories that do not
occur in the original sample or the generation of structural zeros.

The rest of the paper is organized as follows. Section 2 outlines the framework
for generating synthetic populations proposed in [5]. Then the data investigated
in this paper are introduced in Section 3. Sections 4 and 5 discuss statistical
disclosure control issues related to survey and population data. In Section 6,
several scenarios for evaluating the confidentiality of synthetic population data
are described, while Section 7 lists the obtained results for these scenarios. The
final Section 8 concludes.

2 Generation of Synthetic Population Data

The generation of synthetic population data for surveys is described in great
detail in [5]. Therefore, only the basic ideas of this framework are presented
here. Several conditions for simulating population data are listed in [1, 4, 5]. The
most important requirements are:

– Actual sizes of regions and strata need to be reflected.
– Marginal distributions and interactions between variables should be repre-

sented accurately.
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– Heterogeneities between subgroups, in particular regional aspects, should be
allowed.

– Data confidentiality must be ensured.

In general, the framework for generating synthetic population data consists of
four steps:

1. In case of household data, set up the household structure.
2. Simulate categorical variables.
3. Simulate continuous variables.
4. Split continuous variables into components.

Not all of these steps need to be performed, depending on the survey of interest.

Step 1. When generating household data, the household structure is simulated
separately for the different household sizes within each strata. Using the corre-
sponding sample weights, the number of households is simply estimated by the
Horvitz-Thompson estimator [12]. The structure of the population households is
then simulated by resampling some basic variables from the sample households
with probabilities proportional to the sample weights. For disclosure reasons,
information from as few variables as possible should be used to construct the
household structure (e.g., only age and gender information).

Step 2. For each stratum, the conditional distribution of any additional cate-
gorical variable is estimated with a multinomial logistic regression model. The
previously simulated variables are thereby used as predictors. Furthermore, the
sample weights are considered and it is possible to account for structural zeros.
The main advantage of this approach is that it allows to generate combina-
tions that do not occur in the sample, which is not the case for the procedure
introduced in [1, 4].

Step 3. Two approaches for simulating continuous variables are proposed in [5],
but only the approach that performs better in the case of EU-SILC data is
considered in this paper. First, the variable to be simulated is discretized using
suitable breakpoints. The discretized variable is then then simulated as described
in the previous step. Finally, the values of the continuous variable are randomly
drawn from uniform distributions within the respective intervals. Note that the
idea behind this approach is to divide the data into relatively small subsets so
that the uniform distribution is not too much of an oversimplification.

Step 4. Splitting continuous variables into components is based on conditional
resampling of fractions from the sample households with probabilities propor-
tional to the sample weights. Only very few highly influential categorical vari-
ables should thereby be considered for conditioning. The resampled fractions are
then multiplied with the previously simulated total.
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The data simulation framework proposed in [5] is implemented in the R [13]
package simPopulation [14]. In addition to the four steps of the procedure and a
wrapper function to generate synthetic EU-SILC populations, various diagnostic
plots are available.

3 Synthetic EU-SILC Population Data

The European Union Statistics on Income and Living Conditions (EU-SILC) is
a complex panel survey conducted in EU member states and other European
countries. It is mainly used for measuring risk-of-poverty and social cohesion
in Europe [15]. The generation of synthetic population data based on Austrian
EU-SILC survey data from 2006 is discussed and evaluated in [5]. The resulting
synthetic population is investigated in this paper with respect to confidentiality
issues. Table 1 lists the variables that are used in the analysis. A detailed de-
scription of all variables included in EU-SILC data and their possible outcomes
is given in [16].

Table 1. Variables of the synthetic EU-SILC population data used in this paper.

Variable Type

Region Categorical 9 levels

Household size Categorical 9 levels

Age category Categorical 15 levels

Gender Categorical 2 levels

Economic status Categorical 7 levels

Citizenship Categorical 3 levels

Personal net income Semi-continuous

In order to demonstrate that the synthetic population data are of high qual-
ity, they are compared to the underlying sample data. Figure 1 contains mosaic
plots of gender, region and household size for the sample and synthetic popu-
lation data, respectively. Clearly, the plots show almost identical structures. In
addition, the distribution of personal net income is visualized in Figure 2. On the
left hand side, the cumulative distribution functions for the sample and popula-
tion data, respectively, are displayed. For better visibility, only the main parts
of the data are shown, which are nearly in perfect superposition. On the right
hand side, the conditional distributions with respect to gender are represented
by box plots. The fit of the distribution within the subgroups is excellent and
heterogeneities between the subgroups are very well reflected. Note that points
outside the extremes of the whiskers are not plotted. For extensive collections
of results showing that the multivariate structure of the data is well preserved,
the reader is referred to [5, 17].
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Fig. 1. Mosaic plots of gender, region and household size of the Austrian EU-SILC
sample from 2006 and the resulting synthetic population.
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Fig. 2. Personal net income in the Austrian EU-SILC sample from 2006 and the re-
sulting synthetic population. Left : Cumulative distribution functions of personal net
income. Only the main parts of the data are shown for better visibility. Right: Box plots
of the conditional distributions with respect to gender. Points outside the extremes of
the whiskers are not plotted.
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4 A Global Disclosure Risk Measure for Survey Data

A popular global measure of the reidentification risk for survey data is given
by the number of uniquenesses in the sample that are unique in the popu-
lation as well. Let m categorical key variables in the sample and population
data be denoted by xS

j = (xS1j , . . . , x
S
nj)
′ and xP

j = (xP1j , . . . , x
P
Nj)
′, respectively,

j = 1, . . . ,m, where n and N give the corresponding number of observations.
For an observation in the sample given by the index c = 1, . . . , n, let JS

c and
JP
c denote the index sets of observations in the sample and population data,

respectively, with equal values in the m key variables:

JS
c := {j = 1, . . . , n : xSjk = xSck, k = 1, . . . ,m},
JP
c := {j = 1, . . . , N : xPjk = xSck, k = 1, . . . ,m}. (1)

Furthermore, a function I is defined as

I(J) :=

{
1 if |J | = 1,

0 else.
(2)

The global disclosure risk measure can then be expressed by

τ0 :=

n∑
c=1

I(JS
c ) · I(JP

c ). (3)

Note that the notation in (3) differs from the common definition. For com-
parison, see, e.g., the risk measures in [18, 19]. The notation used in (3) describes
the same phenomenon, but provides more flexibility in terms of software imple-
mentation [20] and allows to formulate the adapted risk measures given in the
following section.

Clearly, the risk of reidentification is lower the higher the corresponding pop-
ulation frequency count. If the population frequency count is sufficiently high,
it is not possible for an intruder to assign the observation for which they hold
information with absolute certainty. Hence the intruder does not know whether
the reidentification was successful. However, the true frequency counts of the
population are usually unknown and need to be estimated by modeling the dis-
tribution of the population frequencies.

In Section 6, the global disclosure risk measure τ0 is modified to estimate
the disclosure risk for synthetic population data in certain scenarios instead of
survey data.

5 Confidentiality of Synthetic Population Data

The motivation for generating close-to-reality population data is to make the
resulting data sets publicly available to researchers for use in simulation studies
or courses on survey statistics. Therefore, the disclosure risk of such data needs
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to be low, while at the same time the multivariate structure should be as realistic
as possible.

If population data are generated from perturbed survey data, confidentiality
is guaranteed whenever the underlying survey data are confidential. Perturbing
survey data is typically done by performing recodings and suppression such that
k-anonymity [21, 22] is provided for categorical key variables, as well as low risk of
reidentification on the individual level is ensured [23–25, and references therein].
In any case, perturbation implies information loss. Usually not all combinations
of categorical key variables are still included in the perturbed sample and outliers
in continuous variables are often modified to a great extent. It is thus favorable
to use information of the unperturbed sample to generate synthetic populations,
as this increases the quality of the resulting data.

Based on the ideas proposed in [7, 8], the generation of fully or partially syn-
thetic population data using multiple imputation is discussed in [9–11]. More
precisely, let p be the number of variables in the sample and let the first k,
1 ≤ k < p, categorical variables be available for the population data from ad-
ministrative sources. These first k variables are released unchanged, while the
remaining p − k variables are estimated using regression based multiple impu-
tation. It is important to note that the first k variables of real population data
may still contain unique combinations after cross tabulation, therefore further
investigation may be necessary to ensure confidentiality. Probabilities of reiden-
tification for such synthetic data have been studied in [26], based on the work
of [27, 28], by matching the synthetic data with the intruder’s data on some
predefined key variables.

The situation for synthetic population data generated by the approach of [5]
is somewhat different. A very low number of basic categorical variables are gener-
ated in the first step by resampling from the actual survey data. Since the sample
weights are thereby used as probability weights, on average k-anonymity is pro-
vided with respect to these basic variables, where k denotes the smallest sample
weight. In surveys, k is typically very high (> 500), hence the disclosure risk
is very low. However, additional categorical and continuous variables are gener-
ated based on models obtained from the actual survey data. In particular, the
generation of continuous variables involves random draws from certain intervals.

With the additional categorical variables, some unique combinations may be
introduced in the synthetic population data. If such a combination is not unique
in the real population, it is not useful to an intruder. On the other hand, if such
a combination is unique in the real population as well, it must be ensured that
the values of the other variables in the synthetic population data are not too
close to the real values. Most notably, it is of interest to measure the difference
in continuous variables of the successfully matched statistical units.

In addition, unique combinations in the real population may even be critical
if they are not unique in the synthetic population data. An intruder could in this
case look for all occurrences of such a combination in the synthetic population.
If the corresponding units have too similar values in a (continuous) variable of
interest, the intruder may be able to infer some information on the original value,
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since the synthetic values have been predicted with models obtained from the
real sample data.

In order to investigate these issues in more detail, various disclosure scenarios
are introduced in the following section. Section 7 then presents the results for
the synthetic EU-SILC population data described in Section 3.

6 Disclosure Scenarios for Synthetic Population Data

Five different scenarios are considered to evaluate the confidentiality of syn-
thetic data generated with the framework proposed in [5]. These scenarios are
motivated by the synthetic EU-SILC population data, hence only a continu-
ous variable is considered to contain confidential information, while there are m
categorical key variables. In the case of EU-SILC, the confidential variable is per-
sonal net income and the key variables are region, household size, age category,
gender, economic status and citizenship (see Table 1). Let the confidential con-
tinuous variable for the original sample and synthetic population, respectively,
be denoted by yS = (yS1 , . . . , y

S
n )′ and yU = (yU1 , . . . , y

U
N )′, while the categori-

cal key variables are denoted by xS
j = (xS1j , . . . , x

S
nj)
′ and xU

j = (xU1j , . . . , x
U
Nj)
′,

j = 1, . . . ,m, analogous to the definitions in Section 4. Furthermore, let JS
c be

defined as in (1) and let JU
c be defined accordingly as

JU
c := {j = 1, . . . , N : xUjk = xSck, k = 1, . . . ,m}. (4)

In the following scenarios, the intruder has knowledge of the m key variables
for all observations from the original sample and tries to acquire information on
the confidential variable.

It should be noted that the link to the global risk measure from (3) is loosened
in the following. Disclosure is considered to occur if the value of the confidential
variable for a unique combination of key variables in the sample can be closely
estimated from the synthetic population data, given a prespecified value of ac-
curacy p. However, such a sample uniqueness does not need to be unique in
the true population, in which case close estimation of the confidential variable
would not necessarily result in disclosure. In this sense, the following scenarios
can be considered worst case scenarios and the reidentification risk is thus over-
estimated. Proper analysis with estimation of the true population uniquenesses
is future work.

6.1 Scenario 1: Attack Using One-to-One Matches in Key Variables
with Information on the Data Generation Process

The intruder in this scenario tries to find one-to-one matches between their
data and the synthetic population data. Moreover, they know the intervals from
which the synthetic values were drawn. For details on the data generation pro-
cedure, the reader is referred to [5]. Let these intervals be denoted by [lj , uj ],
j = 1, . . . , N , and let l be a function giving the length of an interval defined as
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l([a, b]) := b− a and l(∅) := 0. With a prespecified value of accuracy p defining
a symmetric interval around a confidential value, (3) is reformulated as

τ1 :=

n∑
c=1

I(JS
c ) · I(JU

c ) · l([y
S
c (1− p), ySc (1 + p)] ∩ [ljc , ujc ])

l([ljc , ujc ])
, (5)

where jc ∈ JU
c if |JU

c | = 1, i.e., jc is the index of the unit in the synthetic popu-
lation with the same values in the key variables as the cth unit in the intruder’s
data if such a one-to-one match exists, otherwise it is a dummy index. The last
term in (5) thereby gives the probability that for the successfully matched unit,
the synthetic value drawn from the interval [ljc , ujc ] is sufficiently close to the
original value ySc .

6.2 Scenario 2: Attack Using One-to-One Matches in Key Variables
without Information on the Data Generation Process

In general, an intruder does not have any knowledge on the intervals from which
the synthetic values were drawn. In this case, reidentification is successful if the
synthetic value itself of a successfully matched unit is sufficiently close to the
original value. The risk of reidentification thus needs to be reformulated as

τ2 :=

n∑
c=1

I(JS
c ) · I(JU

c ) · I[yS
c (1−p),yS

c (1+p)](y
U
jc), (6)

where jc is defined as above and IA denotes the indicator function for a set A.

6.3 Scenario 3: Attack Using All Occurrences in Key Variables with
Information on the Data Generation Process

This scenario is an extension of Scenario 1, in which the intruder does not only try
to find one-to-one matches, but looks for all occurrences of a unique combination
from their data in the synthetic population data. Keep in mind that the intruder
in this scenario knows the intervals from which the synthetic values were drawn.
For a unique combination in the intruder’s data, reidentification is possible if the
probability that the synthetic values of all matched units are sufficiently close
to the original value. Hence the disclosure risk from (5) changes to

τ3 :=

n∑
c=1

I(JS
c ) ·

∏
j∈JU

c

l([ySc (1− p), ySc (1 + p)] ∩ [lj , uj ])

l([lj , uj ])
. (7)

6.4 Scenario 4: Attack Using All Occurrences in Key Variables
without Information on the Data Generation Process

In an analogous extension of Scenario 2, reidentification of a unique combination
from the intruder’s data is successful if the synthetic values themselves of all
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matched units are sufficiently close to the original value. Equation (6) is in this
case rewritten as

τ4 :=

n∑
c=1

I(JS
c ) ·

∏
j∈JU

c

I[yS
c (1−p),yS

c (1+p)](y
U
j ). (8)

6.5 Scenario 5: Attack Using Key Variables for Model Predictions

In this scenario, the intruder uses the information from the synthetic population
data to obtain a linear model for yU with predictors xU

j , j = 1, . . . ,m:

yU = β0 + β1x
U
1 + . . .+ βmxU

m + ε. (9)

For a unique combination of the key variables, reidentification is possible if the
corresponding predicted value is sufficiently close to the original value. Let the
predicted values of the intruder’s data be denoted by ŷS = (ŷS1 , . . . , ŷ

S
n )′. Then

the disclosure risk can be formulated as

τ5 :=

n∑
c=1

I(JS
c ) · I[yS

c (1−p),yS
c (1+p)](ŷ

S
c ). (10)

Note that for large population data, the computational costs for fitting such a
regression model are very high, so an intruder needs to have a powerful computer
with very large memory. Furthermore, the intruder could also perform a stepwise
model search using an optimality criterion such as the AIC [29].

7 Results

The disclosure risk of the synthetic Austrian EU-SILC population data described
in Section 3 is analyzed in the following with respect to the scenarios defined
in the previous section. In these scenarios, the intruder has knowledge of the
categorical key variables region, household size, age category, gender, economic
status and citizenship for all observations in the original sample used to generate
the data. In addition, the intruder tries to obtain information on the confidential
variable personal net income (see Table 1 for a description of these variables).
The original sample thereby consists of n = 14 883 and the synthetic population
of N = 8 182 218 observations.

Note that this paper only evaluates the risk of reidentification for this specific
synthetic data set. In order to get more general results regarding confidentiality
of the data generation process, many data sets need to be generated in a simu-
lation study and the average values need to be reported. This task, however, is
beyond the scope of this paper.

Table 2 lists the results for the risk measures for the investigated scenarios
using different values of the accuracy parameter p. Besides the absolute values,
the relative values with respect to the size of the intruder’s data set are presented,
which give the probabilities of successful reidentification.
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Table 2. Results for Scenarios 1-5 using different values for the accuracy parameter p.

p

Scenario Risk measure 0.01 0.02 0.05

1 τ1 0 0 0.052
2 τ2 0 0 0
3 τ3 1.1 · 10−8 1.2 · 10−6 0.053
4 τ4 15 15 15
5 τ5 20 43 110

1 τ1/n 0 0 3.5 · 10−6

2 τ2/n 0 0 0
3 τ3/n 6.7 · 10−13 8.6 · 10−11 3.5 · 10−6

4 τ4/n 0.001 0.001 0.001
5 τ5/n 0.001 0.003 0.007

The results show that even if an intruder is able to reidentify an observation,
they do not gain any useful information, as the probability that the obtained
value is sufficiently close to the original value is extremely low.

In particular if the intruder tries to find one-to-one matches (Scenarios 1
and 2), the probability of a successful reidentification is only positive for p = 0.05
and if they have information on the data generation process, i.e., the intervals
from which the synthetic values were drawn.

If the intruder looks for all occurrences of a unique combination from their
data in the synthetic population, using information on the data generation pro-
cess hardly changes the probabilities of reidentification (Scenario 3). This is not
a surprise given the formula in (7), since for such a unique combination, the
probabilities that the corresponding synthetic values are sufficiently close to the
original value need to be multiplied. On the other hand, if the intruder uses only
the synthetic values (Scenario 4), some observations are successfully reidentified.
Nevertheless, the probabilities of reidentification are extremely low.

Among the considered scenarios, Scenario 5 leads to the highest disclosure
risk. However, the regression model in this scenario comes with high computa-
tional costs and the probabilities of reidentification are still far too low to obtain
any useful information.

8 Conclusions

Synthetic population data play an important part in the evaluation of statistical
methods in the survey context. Without such data, it is not possible to perform
design-based simulation studies.

This paper gives a brief outline of the flexible framework proposed in [5] for
simulating population data for (household) surveys based on available sample
data. The framework is applicable to a broad class of surveys and is implemented
along with diagnostic plots in the R package simPopulation. In the case of
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EU-SILC, the data generation procedure led to excellent results with respect to
information loss.

In this paper, confidentiality issues of the generated synthetic EU-SILC popu-
lation are discussed based on five different worst case scenarios. The results show
that while reidentification is possible, an intruder would not gain any useful in-
formation from the purely synthetic data. Even if they successfully reidentify a
unique combination of key variables from their data, the probability that the
obtained value is close to the original value is extremely low for all considered
worst case scenarios.

Due to our experiences and the results from the investigated scenarios, we can
argue that synthetic population data generated with the methodology introduced
in [5] and implemented in simPopulation are confidential and can be distributed
to the public. Researchers could then use this data to evaluate the effects of
different sampling designs, missing data mechanisms and outlier models on the
estimator of interest in design-based simulation studies.
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