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1 Introduction

Regression analysis is one of the most widely used techniques in practical data analysis and
statistical modelling. It allows to study how a real-valued response variable is associated with
explanatory variables of various types, including variables of a compositional nature (i.e., vari-
ables that carry relative information). Compositional variables are commonly generated through
some form of signal processing in modern areas of chemistry, biology and environmental sciences.
They are expressed in units such as percentages, parts per million, mg/l, mmol/mol or similar;
typically representing portions of a total sample weight or volume. Some examples include mul-
tivariate measurements of pollutant concentrations, water chemistry, air volatile compounds,
foodstuff nutritional compositions, or species relative abundances. They can be entered in an
explanatory role in a regression problem, for instance to assess their relationship with a wa-
ter, air or food quality index. Compositional variables are also common in social sciences like
economics. For example, shares of enterprise size classes in a region, investment portfolios, and
household or time budgets; which may be put in relation to a productivity or profitability indi-
cator. Such variables carrying relative information are regarded as intrinsically interrelated parts
of a so-called composition, and their observations are generally referred to as compositional data
(Aitchison, 1986). Proper statistical processing of compositional data (i.e., accounting for their
specific nature) is a key requirement for obtaining interpretable results, but also contributes to
the overall validity of the statistical analysis (Pawlowsky-Glahn et al., 2015; Filzmoser et al.,
2018). This also holds if the compositional parts act as covariates in regression analysis (Hron
et al., 2012).

In practice, a common issue is that the observed data set contains outliers, i.e. observations
that deviate from the majority of the observations. This can occur for different reasons, in-
cluding measurement error or some form of contamination. Unfortunately, outliers can greatly
influence estimates of the model parameters and may lead to unreliable results. Methods have
been developed in the literature to downplay the effects of outliers in order to make statistical
analysis more robust (see, e.g., Hampel et al., 1986; Rousseeuw and Leroy, 1987; Maronna et al.,
2002; Huber and Ronchetti, 2009). Traditionally, robust estimators for multivariate data have
been designed to deal with entire observations being contaminated, assuming that there is a
majority of non-contaminated observations in the data set. Such outliers are in the following
referred to as rowwise outliers, in reference to the fact that observations are commonly arranged
by rows in a data matrix, whereas the variables of interest are arranged by columns. However,
atypical observations often exhibit outlying values only in a single variable or a small subset
of variables (Rousseeuw and Van den Bossche, 2018). When contamination occurs at the cell
level of a data matrix, it is actually possible that the majority of rows contain some outlying
cells. Thus, treating entire observations as outliers might lead to an unacceptable loss of useful
information, particularly in high-dimensional data sets. In the literature on rowwise outliers,
equivariance properties are considered essential for estimators, and robustness properties such as
the breakdown point are linked to equivariance properties (e.g., Lopuhaä and Rousseeuw, 1991).
For robustness against outlying cells, on the other hand, it is necessary to give up properties such
as affine equivariance, as affine transformations can spread an outlying cell over all components
of the observation (Alqallaf et al., 2009). Recent literature has focused on this latter type of out-
liers, referred to as cellwise outliers, although this literature is still scarce. Some examples include
works addressing outlier detection (Rousseeuw and Van den Bossche, 2018), scatter matrix esti-
mation (e.g., Van Aelst et al., 2011; Agostinelli et al., 2015; Leung et al., 2017), linear regression
(e.g., Öllerer et al., 2016; Leung et al., 2016; Filzmoser et al., 2020), principal component analysis
(e.g., Hubert et al., 2019), and clustering (e.g., Farcomeni, 2014a,b). Figure 1 illustrates the two
types of outliers that can be found in a data matrix. In addition to issues with outliers, when
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Fig. 1: Illustration of rowwise outliers (left) and cellwise outliers (right).

working with compositional data we have to take into account that all the relevant information
about a compositional part is contained in the ratios between parts (Pawlowsky-Glahn et al.,
2015).

In this paper, we introduce a robust estimation procedure for regression analysis with compo-
sitional covariates that is designed to handle both cellwise and rowwise outliers. The key idea is
to first detect outlying cells and subsequently replace them by sensible values using a (rowwise)
robust imputation procedure. Our simulations indicate that when only a few cells of a row are
contaminated, treating outliers at the cell level with the proposed procedure (rather than at
the row level with rowwise-only robust compositional regression) is advantageous even when the
number of explanatory variables is relatively small (see Section 4). This is particularly relevant
in the presence of a complex (compositional) data structure, because the pernicious effects of
cellwise outliers easily propagate through the ratios between compositional parts. Nevertheless,
as the two types of outliers may occur simultaneously in a data set (Leung et al., 2016; Rousseeuw
and Van den Bossche, 2018), it is important to note that our method is able to protect against
both cellwise and rowwise outliers.

The proposed robust procedure is developed for a linear regression model with a real-valued
response and compositional explanatory variables, possibly accompanied by additional real-
valued covariates. It is similar in spirit to the 3-step regression estimator of Leung et al. (2016).
Both methods start by filtering cellwise outliers and then apply rowwise robust methods. As
Leung et al. (2016) only consider real-valued variables, they can use a rowwise robust estimator
for incomplete data (see also Danilov et al., 2012). However, the situation is more challenging
with compositional data, as they need to be represented in an appropriate coordinate system for
proper statistical analysis. This is not feasible with incomplete data (see Appendix B), which is
why our procedure makes use of an imputation step. The shooting S-estimator of Öllerer et al.
(2016), on the other hand, takes a very different approach. It does not contain a filtering step,
but instead combines a coordinate descent algorithm with simple robust regressions to handle
outlying cells. Most coordinate representations for compositional data are therefore not suitable
for the shooting S-estimator due to the propagation of outliers.

In Section 2, we provide some statistical background about compositional data analysis and
introduce the particular logratio coordinate system we use to represent compositional variables
in a regression context. We focus on so-called pivot coordinates, which allow to link each com-
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positional part to a logratio coordinate within an orthonormal coordinate system. Specifically,
such a logratio coordinate isolates all the relative information about the corresponding composi-
tional part with respect to the other parts in a given composition. Pivot coordinates have been
successfully used in regression analysis with compositional covariates (Hron et al., 2012), as well
as in regression-based imputation of missing values in compositional data (Hron et al., 2010).
Unlike Hron et al. (2012), we perform regression with the MM-estimator (Yohai, 1987) to achieve
high robustness with tunable efficiency, but any other rowwise robust regression method could
be used in our procedure instead. Section 3 gives a detailed description of the proposed method,
which is designed for the regular case of regression analysis with more observations than explana-
tory variables. Its relative performance in comparison to other regression methods is assessed by
simulation in Section 4, whereas Section 5 illustrates its use in a bio-environmental science ap-
plication. The results indicate that our procedure, which maximizes the use of the information
contained in the data set, can cope with moderate levels of cellwise and rowwise contamination,
and yields better or comparable estimates than its competitors: the aforementioned 3-step re-
gression estimator and shooting S-estimator, as well as the rowwise robust MM-estimator and
the ordinary least squares estimator. Moreover, our procedure allows to perform regression anal-
ysis in any isometric logratio coordinate system that provides suitable interpretability of the
results, whereas the predicted values do not depend on the particular coordinate representation.
Section 6 compares our procedure to its competitors in terms of computation time, and the final
Section 7 concludes.

2 Methodological background

A D-part composition is defined as a random vector X = (X1, . . . , XD)′ with strictly posi-
tive components (compositional parts), carrying relative information. Accordingly, compositional
data are multivariate observations where the relevant information is contained in the ratios be-
tween parts (Pawlowsky-Glahn et al., 2015). Compositions are commonly represented as propor-
tions or percentages (where the sum of the parts is equal to 1 or 100, respectively). However,
the above definition implies that the sample space is actually formed by equivalence classes of
proportional vectors and the particular value of the sum of the compositional parts is irrelevant.
Instead of ratios, it is advantageous to work with logratios when dealing with compositions, as
logratios map the range of a ratio from the positive real space onto the entire real space and
symmetrize their values around zero. Moreover, inverse logratios provide the same information
up to the sign, i.e., ln(Xj/Xk) = − ln(Xk/Xj). This relationship implies that for the purpose of
cellwise outlier detection, only D(D − 1)/2 instead of D2 logratios have to be considered.

Let x = (x1, . . . , xD)′ be an observation of a random compositionX = (X1, . . . , XD)′. Clearly,
if a form of contamination generates an outlying value in a compositional part xj , this will
affect all pairwise logratios where xj is contained. On the other hand, data contamination that
generates just one aberrant pairwise logratio ln(xj/xk) might have been originated from two
outlying compositional parts, namely xj and xk. These considerations need to be taken into
account when developing a cellwise outlier detection method in the context of compositional
data analysis.

Compositional data formally obey the so-called Aitchison geometry of the simplex sample
space (Pawlowsky-Glahn et al., 2015). Therefore, it is necessary to map compositions onto the
real space in order to apply ordinary statistical methods that rely on the real Euclidean geometry.
From a geometrical perspective, a new coordinate system with respect to the Aitchison geometry
is constructed. For our purpose, so-called isometric logratio (ilr) coordinates are preferable as
they allow to express compositions in an orthonormal coordinate system (Egozcue et al., 2003).
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Accordingly, the ilr mapping is such that distances between points in the original Aitchison
geometry of the simplex are preserved in the real Euclidean geometry of RD−1. Specifically, we
choose so-called pivot coordinates where the role of a single compositional part against the others
is highlighted (Fǐserová and Hron, 2011; Hron et al., 2017). This way, for a D-part composition
X = (X1, . . . , XD)′, we obtain a real-valued random vector Z = (Z1, . . . , ZD−1)′ with

Zj =

√
D − j

D − j + 1
ln

Xj

D−j

√∏D
k=j+1Xk

, j = 1, . . . , D − 1. (1)

Thus, all relative information about X1 — with respect to the (geometric) average of the re-
maining parts — is contained in the first coordinate Z1. Equivalently, Z1 can be expressed as

Z1 =
1√

D(D − 1)
[ln(X1/X2) + · · ·+ ln(X1/XD)] , (2)

i.e., as a (scaled) sum of all the pairwise logratios with X1 in the numerator. By permuting
the compositional parts in X, such that a different part is put at the first position each time,
we can obtain D different orthonormal coordinate systems, which are orthogonal rotations of
each other. Each of them emphasizes the role of the respective compositional part placed at the
first position (Fǐserová and Hron, 2011). We then generalize the expression in (1) by denoting

X(l) =
(
X

(l)
1 , . . . , X

(l)
D

)′
= (Xl, X2, . . . , Xl−1, Xl+1, . . . , XD)′ and Z(l) =

(
Z

(l)
1 , . . . , Z

(l)
D−1

)′
,

with

Z
(l)
j =

√
D − j

D − j + 1
ln

X
(l)
j

D−j

√∏D
k=j+1X

(l)
k

, j = 1, . . . , D − 1, l = 1, . . . , D. (3)

Thus, all the relative information about an arbitrary compositional part Xl, l = 1, . . . , D, is

contained in the corresponding first pivot coordinate Z
(l)
1 . Note that an inverse mapping can be

applied to transform back to X(l) =
(
X

(l)
1 , . . . , X

(l)
D

)′
, with

X
(l)
1 = exp

(√
D − 1

D
Z

(l)
1

)
,

X
(l)
j = exp

(
−
j−1∑
k=1

1√
(D − k + 1)(D − k)

Z
(l)
k +

√
D − j

D − j + 1
Z

(l)
j

)
,

j = 2, . . . , D − 1,

X
(l)
D = exp

(
−
D−1∑
k=1

1√
(D − k + 1)(D − k)

Z
(l)
k

)
.

(4)

This conveniently allows to transfer outputs from statistical processing in real space back to the
original simplex sample space of compositional data, using any possible proportional represen-
tation within the equivalence class according to any prescribed sum of parts (Filzmoser et al.,
2018).
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3 Robust compositional regression with cellwise outliers

Here we address three challenges for regression analysis: (i) the inclusion of compositional ex-
planatory variables, possibly complemented by real-valued explanatory variables; (ii) the pres-
ence of cellwise outliers; and (iii) the presence of rowwise outliers. Each one creates its own set
of particular issues for statistical modelling, and regardless of their occurrence in isolation or in
combination, ignoring these issues can lead to unreliable and biased results (e.g., Hron et al.,
2012; Filzmoser et al., 2018; Öllerer et al., 2016; Leung et al., 2016; Yohai, 1987). Therefore, the
proposed method consists of four stages:

1. Detect outlying cells in the data set (that are not part of entire outlying observations).
2. Replace them by sensible values via rowwise robust imputation (possibly in both response

and covariates).
3. Conduct rowwise robust regression using the imputed data, including compositional predic-

tors conveniently expressed in terms of logratio pivot coordinates.
4. Use a multiple imputation scheme so that the standard errors of the regression coefficient

estimates account for the additional uncertainty caused by missing values.

These stages are discussed in more detail in the following subsections, while pseudocode for the
entire procedure is given in Appendix A. Note that the separate imputation step is necessary to
keep the properties of the pivot coordinates defined in (3). If the filtered outliers were not imputed,
the resulting missing logratios of compositional parts would make it unmanageable to work with
pivot coordinates. As an alternative, we investigated a modification of pivot coordinates so that
this propagation of missing values is avoided (see Appendix B). However, these modified pivot
coordinates do not lead to coordinate systems that are exact orthogonal rotations of each other,
and therefore their practical interpretability is compromised. It should also be noted that we
include the response variable in the cellwise outlier filter and multiple imputation steps, which
is in line with the literature on multiple imputation (e.g., Little, 1992; Allison, 2002, p.53).
Omitting the possibly correlated response variable from the imputation models would in general
imply misspecification of the conditional distributions from which the imputed values are drawn,
yielding biased estimates of the regression coefficients (see Appendix C). If a prediction of the
response variable is needed for a new observation that contains missing values in the explanatory
variables, a separate imputation procedure that considers only the explanatory variables could
be applied before predicting the response.

For the sake of easing the description of the data set involved in each of the four stages and
the corresponding roles of the variables, we use the following mathematical notation:

• R1, . . . , Rp, Rp+1 to indistinctly refer to any potential real-valued covariates V1, . . . , Vp along
with the response variable Y , whenever their distinction is not relevant.

• X = (x1, . . . ,xD, r1, . . . , rp+1) to represent an n × (D + p + 1) dimensional data matrix in
which the rows contain realizations of the compositional parts X1, . . . , XD and the real-valued
variables R1, . . . , Rp+1, with xj = (x1j , . . . , xnj)

′ and rj = (r1j , . . . , rnj)
′ representing column

vectors of observations of each of them. The corresponding imputed data set is denoted by X̃ ,
and its compositional and real-valued elements are denoted by x̃i1, . . . , x̃iD and r̃i1, . . . , r̃i,p+1,
respectively, i = 1, . . . , n.

• L = (ln(x1/x2), . . . , ln(xD−1/xD), r1, . . . , rp+1) to refer to an n× [D(D−1)/2+p+1] dimen-
sional data matrix in which the compositional parts are represented by all the corresponding
D(D − 1)/2 pairwise logratios.

• O for the set of indices (i, j) of the cells in X that are marked as cellwise outliers. It is
important to recall that outlying cells are only marked if they are not part of a rowwise
outlier.
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3.1 Detection of cellwise outliers

The detection of deviating cells is based on the bivariate filter of Rousseeuw and Van den Bossche
(2018). The foremost assumption of this method is that the data matrix is generated from a
multivariate normal population, but some cell values are contaminated at random and become
outliers. The procedure is briefly sketched in the following (see Rousseeuw and Van den Bossche,
2018, for full details):

1. First, all variables (columns) are robustly standardized, e.g., by subtracting the median and
dividing by the median absolute deviation (MAD).

2. Then deviating cells in single variables are marked, i.e., those containing absolute values

higher than the cut-off value
√
χ2
1,τ , where χ2

1,τ is the τ -quantile of the χ2 distribution with

one degree of freedom.
3. For each variable, the correlated variables are determined, i.e., those with absolute robust

correlation higher than 0.5. Predictions for every cell are made based on each correlated
variable that has a nonmarked cell in the same observation (row). If multiple nonmarked
cells are available, the weighted mean of the corresponding predictions can be taken as the
predicted value (see Equation (9) of Rousseeuw and Van den Bossche, 2018). A deshrinkage
step is subsequently applied to obtain the final prediction. If all other cells of the row are
marked as well, the prediction is set to 0 (which is the location estimate of the variable since
all variables are standardized). A cell for which the observed value differs too much from its
prediction is marked.

4. The cells marked in step 2 or 3 are considered to be cellwise outliers.
5. Finally, rowwise outliers are identified. The i-th row of the data matrix is marked as an

outlier if the absolute value of a robustly standardized statistic Ti exceeds the cut-off value√
χ2
1,τ . The statistic Ti is defined as the average (over j) of F (d2ij), where F stands for the

cumulative distribution function of the χ2 distribution with one degree of freedom, and dij
denotes the robustly standardized difference between the value in the cell with indices (i, j)
and its prediction (from step 3).

We apply the bivariate filter to the data matrix L, which contains the relevant pairwise lo-
gratios of the compositions along with potential real-valued covariates and the response variable,
i.e., L = (ln(x1/x2), . . . , ln(xD−1/xD), r1, . . . , rp+1). The next task is to transfer the information
about the cellwise outliers in L to X = (x1, . . . ,xD, r1, . . . , rp+1). While this is identical for the
real-valued variables, we propose to mark a compositional part xij in X as a cellwise outlier (and
subsequently set its value to missing to be imputed) if at least half of the logratios containing
xij are identified as outliers by the bivariate filter. After extensive simulation experiments, we
found this condition strict enough to detect outlying compositional parts but not overly strict.
As a matter of fact, many outlying cells would not be detected if we required that all logratios
including a particular part had to be marked as outliers. Rousseeuw and Van den Bossche (2018)

recommend to use τ = 0.99 in the cut-off value
√
χ2
1,τ of the outlier filter, which gave favorable

results in our simulations. Nevertheless, we recommend to consider lower values of τ as well to
investigate sensitivity relative to this parameter (as illustrated in the case study in Section 5).

Note that the purpose of the initial filter is to avoid that the subsequent regression modelling
is influenced by cellwise outliers. However, while cellwise outlier filters perform well in detecting
individual outlying cells, they are not as effective in detecting rowwise outliers (Leung et al.,
2016; Rousseeuw and Van den Bossche, 2018). Hence it is still crucial to protect against rowwise
outliers in the subsequent stages of the procedure. Moreover, observations that have a large
number of outlying cells are likely to be rowwise outliers. In our view, it is thus better not
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to impute those data cells and instead have the entire observation downweighted by a robust
regression estimator in the following stages. Hence, at this point we treat an observation as a
rowwise outlier if step 5 of the bivariate filter identifies the corresponding row in L as a rowwise
outlier, or if at least 75% cells of the corresponding row in X are marked as cellwise outliers. The
final index set O contains the indices (i, j) of all cellwise outliers that are not part of rowwise
outliers. Cells of X indicated by O are treated as missing values to be imputed in the next stage.

3.2 Imputation of cellwise outliers

Since compositional data are projected onto RD−1 through logratios involving several parts,
missing parts as derived from the cellwise outlier filter can easily result in an unmanageable
amount of missing logratios. We therefore impute the affected cells beforehand, so that subsequent
compositional regression based on logratios can be conducted as usual on the imputed data
matrix. For this purpose, we modify the iterative model-based imputation procedure of Hron
et al. (2010) for compositional data to allow for a mixture of compositional and real-valued
variables. This method uses a representation of the compositional data in pivot coordinates, and
imputes the missing cells by estimates of expected values conditional on the observed part of
the data. Such conditional expected values are modeled by linear regression models (with the
assumption that the error terms have expected value equal to zero), which are fitted using the
rowwise robust MM-estimator (Yohai, 1987). As MM-regression allows to reduce the influence
of rowwise outliers on the estimation of the imputation model, the imputed values may reflect
the structure of the majority of the available data.

The imputation of outlying cells starts by separately sorting compositional parts and real-
valued variables in decreasing order according to the amount of missing values. To simplify
notation, we assume that this sorting does not change the original position of any compositional
part or real-valued variable.

Following Hron et al. (2010), the imputation algorithm is initialized with the simultaneous
k-nearest-neighbor (knn) method, which is based on the Aitchison distance (Pawlowsky-Glahn
et al., 2015) between neighbors for the compositional parts and on the Euclidean distance between
neighbors for the real-valued variables.

Each iteration of the imputation algorithm consists of at most D + p + 1 steps. The first
steps involve the imputation of the compositional parts (up to D), whereas the remaining steps
involve the imputation of the real-valued variables (up to p + 1). The procedure is summarized
as follows:

1. For each compositional part xl that contains outlying cells, l = 1, . . . , D, pivot coordinates

are obtained to sequentially fit regression models of Z
(l)
1 on the remaining D− 2 coordinates

plus the p+ 1 non-compositional variables as covariates:

Z
(l)
1 = a+ b

(l)
2 Z

(l)
2 + . . .+ b

(l)
D−1Z

(l)
D−1 + c1R1 + . . .+ cp+1Rp+1 + ε(l), (5)

where ε(l) is a random error term. Observations with no outlying cell in xl are used for

model fitting. The estimated regression coefficients â, b̂
(l)
2 , . . . , b̂

(l)
D−1, ĉ1, . . . , ĉp+1 are obtained

using MM estimation such that they are robust against rowwise outliers. Furthermore, MM-
regression also protects against poorly initialized missing value imputation (Hron et al., 2010).

The coefficient estimates are then used to compute predicted values ẑ
(l)
i1 , (i, l) ∈ O.

For (i, l) ∈ O, imputed compositional parts x̂i1, . . . , x̂iD are obtained from the pivot coordi-

nates ẑ
(l)
i1 , z

(l)
i2 , . . . , z

(l)
i,D−1 via the inverse mapping in (4). Note that the ratios between the

non-outlying parts are not affected by this procedure.
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2. Next, each real-valued variable that contains outlying cells is imputed in an analogous way by
sequentially serving as response in MM-regression on the remaining variables as predictors,
including the compositional parts through pivot coordinates. Note that it does not matter
which particular pivot coordinate system is used here. They all yield the same predictions
due to the fact that they are orthogonal rotations of each other.

This is repeated iteratively until the sum of the squared relative changes in the imputed
values are smaller than a threshold η. Following Hron et al. (2010), η was set at 0.5, and only a
few iterations were typically needed to reach convergence in our simulations. This results in an
imputed data set X̃ which serves as input for the subsequent stage.

The performance of the imputations in the steps 1 and 3 above can often be improved by
applying some form of variable selection to fit the corresponding regression models. To keep the
computational burden low, we use a simple initial variable screening technique: before starting
the iterative imputation procedure, we identify the most correlated variables for each variable
to be imputed. We thereby compute robust correlations via bivariate winsorization (Khan et al.,
2007) based on pairwise complete observations. However, initial simulations suggest that variable
screening may not be necessary if the number of variables and the amount of filtered cells are
both relatively small (e.g., D + p + 1 ≤ 10 and less than 10% filtered cells). Moreover, when
the number of variables is small, a smaller correlation threshold should be used to ensure that
enough variables survive the screening process. Our procedure therefore implements the following
default behavior as a compromise: if D + p + 1 ≤ 10, only variables with absolute correlations
higher than 0.2 are used, otherwise the threshold is set to 0.5.

3.3 Robust compositional regression

After imputing cellwise outliers, and possibly other missing values in the data set, the actual
regression modelling is conducted. Hron et al. (2012) proposed a suitable approach for regression
with compositional explanatory variables that yields a meaningful interpretation of the regres-
sion coefficients through the use of logratio pivot coordinates. Here we extend this to include the
possibility of having p non-compositional covariates V1, . . . , Vp along with the D-part composi-
tion X = (X1, . . . , XD)′ as predictors of a real-valued response variable Y . By expressing the
composition in RD−1 via pivot coordinates defined in (3), we obtain D different linear regression
models

Y = α+ β
(l)
1 Z

(l)
1 + . . .+ β

(l)
D−1Z

(l)
D−1 + γ1V1 + . . .+ γpVp + ε, l = 1, . . . , D, (6)

with regression parameters (α, β
(l)
1 , . . . , β

(l)
D−1, γ1, . . . , γp)

′, l = 1, . . . , D, and a random error term
ε. Parameter estimation is conducted by ordinary least squares in Hron et al. (2012). But since we
still need to protect against rowwise outliers after dealing with cellwise outliers, we instead apply
the robust and highly efficient MM-estimator (Yohai, 1987). Note that this estimator is designed
to handle rowwise outliers only, and it could easily fail if applied directly to data containing
cellwise outliers by skipping the previous cellwise outlier detection and imputation stages. The
same problem would occur with other rowwise robust estimators for regression models with
compositional data (e.g., Hron and Filzmoser, 2010; Hr̊uzová et al., 2016).

As Z
(l)
1 , . . . , Z

(l)
D−1 for different choices of l result from orthogonal rotations of the corre-

sponding pivot coordinate systems, the associated regression fits yield identical estimates of the
intercept and the regression coefficients of the non-compositional covariates, which are denoted
by α̂ and γ̂1, . . . , γ̂p, respectively. Moreover, the (normalized) aggregation of all pairwise logratios

involving Xl into the coordinate Z
(l)
1 results in a logratio that stands for the dominance of the
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l-th part with respect to the average of the other components (in terms of the geometric mean,

see (3)). Accordingly, the value of the coefficient β
(l)
1 relates to the influence of the dominance

of the part Xl (with respect to the mean behavior of the other parts in the composition) on the
response variable. Because of the mutual orthogonality of the pivot coordinate systems, we can

sequentially extract the estimate β̂
(l)
1 from each of the D models fitted above (l = 1, . . . , D).

Hence, the final vector of estimated regression coefficients is (α̂, β̂
(1)
1 , . . . , β̂

(D)
1 , γ̂1, . . . , γ̂p)

′.
Following Müller et al. (2018), the interpretation of the coefficients of the compositional parts

can be enhanced by ignoring the normalization constant of the respective pivot coordinate in (3)
and using binary logarithms rather than natural logarithms. This way, doubling the dominance
of Xl implies a unitary increase of the binary logarithm. Accordingly, under the usual assumption
that the error terms of the model have expected value equal to zero, the value of the coefficient

β
(l)
1 corresponds to the change in the mean response when the dominance of Xl is doubled, while

keeping all other regressors fixed. Nevertheless, we apply the normalization constant and use
natural logarithms (as commonly done) for the purpose of this paper.

3.4 Multiple imputation estimates

As described above, the input data to fit the final regression model is an imputed data set X̃ . It
is well-known that measures of variability like standard errors can be underestimated when the
usual formulas are applied to imputed data (Little and Rubin, 2002). Consequently, statistical
significance tests in relation to the regression coefficients tend to be anticonservative. The reason
is that the uncertainty derived from imputing the filtered cells is not taken into account. A well-
established solution to this problem is using multiple imputation (MI) (Rubin and Schenker,
1986). The basic idea is that instead of a single imputed data set, M different imputed data sets
are actually analysed. It has been shown that by aggregating estimates from all these data sets,
better estimates of the standard errors are obtained, as they reflect the additional uncertainty
from the imputation process (Little and Rubin, 2002; Van Buuren, 2012; Cevallos Valdiviezo and
Van Aelst, 2015). We adopt this approach and, following Bodner (2009) and White et al. (2011),
we consider the number of imputed data sets M to be the rounded percentage of rows in the
data matrix affected by cellwise outliers.

Each of the M data sets is obtained from X̃ by adding random noise to the estimated
values resulting from the imputation procedure (Section 3.2). That is, rather than imputing
the filtered cells with the conditional expected value, we impute them by a random draw from
the estimated conditional distribution. For compositional data, the noise is not added directly
to the compositional part x̃il, (i, l) ∈ O, as this would be incoherent with the geometry of the

simplex, but to the first pivot coordinate z̃
(l)
i1 , obtained from the composition

(
x̃
(l)
i1 , . . . , x̃

(l)
iD

)′
=

(x̃il, x̃i1, . . . , x̃i,l−1, x̃i,l+1, . . . , x̃iD)′ via (3). The corresponding values of the compositional parts
are then obtained by the inverse mapping in (4). More specifically, consider the j-th step of the
last iteration of the imputation procedure (Section 3.2), with j = 1, . . . , D+p+1. Missing values
in the j-th variable are imputed by robust regression using all the other variables as predictors.
Following Templ et al. (2011b), random noise is added to the imputed value by drawing M
random values from N(0, σ̂2

j (1 + oj/n)), where σ̂j is a robust residual scale estimate from the
corresponding regression fit and oj denotes the number of values to be imputed in the j-th
variable.

Afterwards, robust MM-regression estimation (Section 3.3) is performed for each of the M

imputed data sets. Following Rubin (1987) and Barnard and Rubin (1999), we use θ̂{m} to denote

generically a parameter point estimate (i.e., any of α̂, β̂
(1)
1 , . . . , β̂

(D)
1 , γ̂1, . . . , γ̂p) and Û{m} refers
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to the corresponding estimated variance from the m-th imputed data set, m = 1, . . . ,M . A final
point estimate and variance for each regression coefficient is then obtained as

θ̂ =
1

M

M∑
m=1

θ̂{m} and V̂ = Ŵ +
M + 1

M
B̂,

respectively, where Ŵ = 1
M

∑M
m=1 Û

{m} is the average within-imputation variance and B̂ =

1
M−1

∑M
m=1

(
θ̂{m} − θ̂

)2
is the between-imputation variance.

4 Simulation study

In order to assess the performance of our procedure in comparison to other (robust) methods for
compositional regression, we perform a simulation study.

4.1 Simulation design

The parameters for the simulation design are partly inspired by the data set about livestock
methane emission from ruminal volatile fatty acids (VFA) introduced in Section 5. As the main
novelty of our procedure is the inclusion of compositional covariates in the context of robust
regression with cellwise and rowwise outliers, we assume for simplicity that there are only com-
positional covariates involved. We set n ∈ {50, 100, 200} as the number of observations and
D ∈ {5, 10, 20} as the number of compositional parts. The simulated compositions are generated
through pivot coordinates. In order to obtain a realistic covariance structure in the pivot coor-
dinate system, we chose an initial covariance matrix Σ0 =

(
0.5|i−j|/10

)
1≤i,j≤D−1, with entries

being similar in magnitude to the ones observed in the VFA case study. To investigate the ef-
fects of adding more variability to the data matrix, we consider the covariance matrix in pivot
coordinates Σ as a multiple of the initial covariance matrix, i.e., Σ = kΣ0 with k ∈ {1, 2, 3}.

We examine a scenario with both rowwise and cellwise outliers. Specifically, we consider the
case where outlying rows (entire observations) and outlying cells (in the compositional parts and
the response variable) both occur with probability ζ ∈ {0, 0.02, 0.05, 0.1, 0.2}. We first generate
entire outlying observations (rows) and, subsequently, outlying cells only in non-outlying rows.
We perform 1000 simulation runs for each configuration. In each simulation run, the data are
generated as follows:

1. Pivot coordinates are sampled as zi = (zi1, . . . , zi,D−1)′ ∼ ND−1(0,Σ), i = 1, . . . , n.

2. The values of the response variable are obtained in the pivot coordinate system as

yi = β0 + β1zi1 + . . .+ βD−1zi,D−1 + εi, εi ∼ N (0, 0.252), i = 1, . . . , n,

with regression parameters β0 = 0 and (β1, . . . , βD−1)′ = (1, 0, 1, 0, . . .)′. The variance of the
error terms εi is chosen to roughly mimic the signal-to-noise ratio observed in the VFA data.

3. The pivot coordinates zi = (zi1, . . . , zi,D−1)′ are transformed according to (4) to obtain the
corresponding compositions xi = (xi1, . . . , xiD)′, i = 1, . . . , n.

4. Observations are randomly selected with probability ζ to be turned into rowwise outliers. We
first generate outliers in the pivot coordinates along the smallest principal component. Let
U ⊆ {1, . . . , n} denote the set of indices of the rowwise outliers, and let qi = (qi1, . . . , qi,D−1)′

denote the principal component scores corresponding to zi. For i ∈ U , we change the value
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of the last component q∗i,D−1 = qi,D−1 + 5
√
k. Note that the factor

√
k ensures that the

outlier shift is of the same magnitude for the different scalings of the covariance matrix Σ =
kΣ0. After transforming the scores q∗i = (qi1, . . . , qi,D−2, q

∗
i,D−1)′ back to pivot coordinates

to obtain outlying z∗i = (z∗i1, . . . , z
∗
i,D−1)′, we change the respective values of the response

variable to
y∗i = β∗0 + β∗1z

∗
i1 + . . .+ β∗D−1z

∗
i,D−1 + εi, i ∈ U ,

with regression parameters β∗0 = 0 and β∗j = −1, j = 1, . . . , D − 1. Using regression co-
efficients that are very different to those from clean observations ensures that the rowwise
outliers are bad leverage points. Finally, the outlying pivot coordinates z∗i = (z∗i1, . . . , z

∗
i,D−1)′

are transformed according to (4) to obtain the corresponding outlying compositions x∗i =
(x∗i1, . . . , x

∗
iD)′, i ∈ U .

5. Cells corresponding to non-outlying observations (xi1, . . . , xiD, yi)
′, i /∈ U , are randomly se-

lected with probability ζ to be turned into cellwise outliers. Let O denote the set of indices
(i, j) of the outlying cells. For any pair (i, j) ∈ O, we change the cell value to x∗∗ij = 10 · xij
if j ∈ {1, . . . , D} or to y∗∗i = 10 · yi if j = D + 1. The multiplicative factor was chosen
to minimize the chance that outlying cells overlap with noise that occurs naturally in the
composition or the real-valued response.

The resulting observations with rowwise and cellwise outliers are denoted by x?i = (x?i1, . . . , x
?
iD)′

and y?i , where

x?ij =


x∗ij , if i ∈ U ,
x∗∗ij , if (i, j) ∈ O,
xij , otherwise,

i = 1, . . . , n, j = 1, . . . , D,

and

y?i =

 y∗i , if i ∈ U ,
y∗∗i , if (i,D + 1) ∈ O,
yi, otherwise,

i = 1, . . . , n.

4.2 Methods, performance measures, and software

Below we give a brief description of the methods that participate in the evaluation, together with
the abbreviations we use to refer to them:

LS: ordinary compositional least squares regression (with no treatment for outliers).

MM: robust compositional MM-regression (with no treatment for cellwise outliers).

ShS: shooting S-estimator (Öllerer et al., 2016) obtained from the D(D − 1)/2 unique pairwise
logratios. The shooting S-estimator is designed to cope with cellwise contamination by weigh-
ing the components of an observation differently. Note that the results can only be compared
in terms of prediction and not in terms of parameter estimation. We used both Tukey’s bi-
weight loss function and the skipped Huber loss function: the former yields continuous weights
in [0, 1] while the latter leads to binary weights in {0, 1} (see Öllerer et al., 2016). We only
report the results for Tukey’s biweight loss function, as it generally gave better and more
stable results than the skipped Huber loss function.

3S: 3-step regression (Leung et al., 2016) fitted to additive logratio (alr) coordinates, i.e. the com-
position (X1, . . . , XD)′ is represented by the real-valued vector of log-ratios

(
ln(X1/Xj), . . . ,

ln(Xj−1/Xj), ln(Xj+1/Xj), . . . , ln(XD/Xj)
)′

, using a part Xj as reference in the denomina-
tor (Aitchison, 1986). Note that the use of D(D − 1)/2 pairwise logratios as covariates is
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not possible here since the algorithm requires full-ranked data. 3-step regression first uses a
consistent univariate filter to eliminate outlying cells; second, it applies a robust estimator of
multivariate location and scatter to the filtered data to downplay outlying rows; and third,
it computes robust regression coefficients from the previous step. In each simulation run, the
reference part Xj is selected randomly. As with the shooting S-estimator, the results are com-
pared only in terms of prediction. It is important to note that the predicted values depend
on the choice of Xj in the denominator of the logratios. For example, an outlying value in a
cell xi1 results in a rowwise outlier in the observation (ln(xi2/xi1), . . . , ln(xiD/xi1))′, but only
in a cellwise outlier in (ln(xi1/xiD), . . . , ln(xi,D−1/xiD))′. These cases will be handled differ-
ently by 3-step regression, yielding different predictions of the response variable. Although
this leads to somewhat limited practical applicability, it is still informative to include this
approach here in order to compare its general performance.

BF-MI: this is our proposed method which applies the bivariate filter (BF) followed by multiple
imputation (MI). Based on preliminary simulations, we set τ = 0.99 (to determine the cut-
off value for marking outliers in the bivariate filter). In the imputations, we use the default
behavior for variable screening (see Section 3.2). For the MM-estimator, we use Tukey’s
biweight loss function, with the initial estimator tuned for maximum breakdown point and
the final estimator tuned for 95% efficiency.

IF-MI: this represents a hypothetical situation where an ideal filter (IF) is able to perfectly
identify all outlying cells (and only those). The remaining steps of our method are afterwards
applied using multiple imputation (MI). We use the same settings for variable screening and
MM estimation as used for BF-MI. This case is included for benchmarking purposes only, as
it is generally unattainable in practice.

Note that all methods except the shooting S-estimator and 3-step regression consider pivot co-
ordinates to represent the compositional covariates. By construction, the shooting S-estimator
and the 3-step regression method require the use of pairwise logratios and alr coordinates, re-
spectively.

The performance of the methods is assessed in terms of the mean squared error (MSE) of the
coefficient estimates, computed as

MSE =
1

D

D−1∑
j=0

(β̂j − βj)2.

Note that in order to reduce the computational burden, a single set of pivot coordinates is used
without loss of generality to calculate the MSE of the regression coefficients. Further evaluation
is made in terms of prediction error. For this purpose, n additional clean test observations xtesti

and ytesti , i = 1, . . . , n, are generated in each simulation run according to steps 1–3 of our data
generating process. Note that the number of observations in the test data is the same as in the
training data to which the methods are applied. On the test data, the mean squared error of
prediction (MSEP) is calculated as

MSEP =
1

n

n∑
i=1

(ŷtesti − ytesti )2,

where ŷtesti denote the predicted values of ytesti .
All computations were performed using the R environment for statistical computing (R Core

Team, 2020), including the packages cellWise (Raymaekers et al., 2019), robCompositions

(Templ et al., 2011a), robreg3S (Leung et al., 2015) and the function shootingS() obtained
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from https://github.com/aalfons/shootingS. The code for our method is available at https:
//github.com/aalfons/lmcrCoda.

4.3 Simulation results

For different numbers of compositional parts D, Figures 5–7 in Appendix D contain plots of the
average MSE against the contamination level ζ for various sample sizes n and scaling factors
k of the covariance matrix in pivot coordinates. Similarly, the average MSEP is displayed in
Figures 8–10 in Appendix D.

Regarding coefficient estimates, all methods are accurate when there is no contamination
(ζ = 0). As contamination increases, OLS is quickly influenced by the outliers, yielding the highest
MSE of all methods. The MSE of MM also increases continuously for increasing contamination
level, which is expected since MM is only robust to rowwise outliers but not to cellwise outliers.
Our proposed method BF-MI is however very accurate for up to 5% contamination and close to
the hypothetical IF-MI case using an ideal outlier filter. While the MSE of BF-MI increases for
larger contamination levels, it is generally still lower than that of MM, although the difference
between the two becomes small as variability in the data increases (increasing k). The MSE
of IF-MI remains fairly low for 10% contamination, which indicates that the outlier filtering
step is crucial for the performance of our proposed method, but under 20% contamination the
MSE of IF-MI increases as well. All in all, the assessment based on MSE suggests that BF-MI
offers improved performance over existing techniques for regression analysis with compositional
covariates.

As to prediction performance, the results are comparable to the above. OLS in general has the
highest MSEP, and BF-MI outperforms MM. In many settings, the MSEP of ShS is comparable to
that of BF-MI or somewhat higher, but ShS is unstable if the ratio of n/D is small. Furthermore,
ShS cannot be applied for D = 20 and n = 50 or n = 100, since the number of pairwise logratios
is larger than the number of observations in those cases. 3S is also similar to BF-MI in terms
of MSEP while the contamination level is 5% or lower, but each method is performing slightly
better than the other in some settings with higher amounts of contamination. While 3S predicts
better for lower values of D when the data are more scattered (higher values of k), BF-MI has
lower MSEP for D = 20.

Note that we also considered counterparts to IF-MI and BF-MI that use single imputation
instead of multiple imputation. The results were very similar. This is actually expected, as the
main purpose of multiple imputation is to improve standard errors (Little and Rubin, 2002;
Van Buuren, 2012; Cevallos Valdiviezo and Van Aelst, 2015), but there should not be large dif-
ferences in the point estimates of the coefficients (compared to single imputation). Consequently,
the bias component of the MSEP should be similar, and the MSEP can only be improved by
reducing the variance in the predictions. In multiple imputation, such a reduction in variance
would in turn require to decrease the correlation between predictions based on different imputed
data sets. However, when the number of imputed cells is rather small, the predictions based on
different imputed data sets are still highly correlated. An improvement in prediction performance
via multiple imputation can only be expected for larger fractions of imputed cells (cf. results and
recommendations of Cevallos Valdiviezo and Van Aelst, 2015), where the correlation between
imputed data sets is sufficiently reduced.

https://github.com/aalfons/shootingS
https://github.com/aalfons/lmcrCoda
https://github.com/aalfons/lmcrCoda
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5 Illustrative case study

We apply the proposed compositional MM-regression with a bivariate cellwise outlier filter and
multiple imputation (BF-MI algorithm) to investigate the association between livestock methane
emissions from individual animals and their ruminal volatile fatty acid (VFA) composition, while
accounting for the potential effects of other animal and diet-related covariates. The concentrations
of VFA were determined by high-performance liquid chromatography from rumen fluid samples
taken using a stomach tube. The quality of the chromatography determines the precision of the
measurements, and outlying measurements may be related to unstable baselines, noisy detectors,
poor resolution of the components, or errors on the part of the operator in preparing the solution
or performing the measurement. The data set consists of n = 239 observations originating from
the study carried out in Palarea-Albaladejo et al. (2017). It includes the following variables:

• CH4: animal methane yield measured in g/kg DMI using indirect respiration chambers.
• VFA: 6-part composition measured in mmol/mol of acetate, propionate, butyrate, isobutyrate,

isovalerate and valerate.
• ME : diet metabolizable energy measured in MJ/kg DM as estimated from feed composition.
• DMI : animal dry matter intake in kg/day.
• Weight : animal bodyweight in kg.
• Diet : type of diet fed to the animal, either: (a) concentrate diet, based on barley and grains

with low forage (< 100 g/kg DM); or (b) mixed diet, including forage (400-600 g/kg DM)
along with barley and grains.

All four positive-valued variables in the data set (CH4, ME, DMI and Weight) are log-
transformed and thus mapped into real space to better accommodate model assumptions. More-
over, the data set is split by diet type before the bivariate outlier filter (Section 3.1) is applied
separately to each resulting subset of data. Overall, 1.26% of rows are marked as rowwise out-
liers, while 1.96% of cells in the remaining observations are marked as cellwise outliers. Figure 2
highlights these in each numerical variable, as well as the marked rows, in red color.

Note that both the imputation step (Section 3.2) and the regression step (Section 3.3) of our
procedure work with categorical variables in the usual way by including dummy variables. Here
we add to the list of covariates a dummy variable DietMixed, which takes the value 1 for mixed
diet and 0 for a concentrate diet. The regression model is thus specified as

ln(CH4) = α+ β
(l)
1 Z

(l)
1 + . . .+ β

(l)
5 Z

(l)
5 +

+ γ1ln(ME) + γ2ln(DMI) + γ3ln(Weight) + δDietMixed + ε,
(7)

where l = 1, . . . , 6 indicates the successive pivot coordinate systems and corresponding regression
coefficients used to isolate the relative role (dominance) of each of the six parts forming the VFA

composition through the first pivot coordinate Z
(l)
1 in each system (Section 2).

We fit the regression model defined in (7) using ordinary compositional LS estimation, com-
positional MM estimation and the proposed BF-MI method. For BF-MI, we use τ = 0.99 and
skip the variable screening in the imputation step, as the number of variables is rather small
and fewer than 2% of cells are filtered. Note that in this application we are interested in an
interpretation of the results in terms of pivot coordinates, therefore it is not meaningful to apply
other methods such as the shooting S-estimator (Öllerer et al., 2016) or 3-step regression (Leung
et al., 2016).

Table 1 displays the results using the three estimation procedures considered. Focusing on
the VFA composition, LS estimation does not result in a statistically significant association
between the dominance of ruminal acetate and methane yield (p = 0.127). The MM-estimator
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Fig. 2: Cellwise and rowwise outliers detected by the bivariate filter in the VFA data set.
Outlying cells/rows are colored in red. The grey color scheme reflects the values of compositional
parts and real-valued variables (the higher the value, the darker the color).

Table 1: Regression coefficient estimates, standard errors and p-values for the VFA data set:
ordinary compositional LS estimation (LS), compositional MM estimation without a cellwise
outlier filter (MM), and proposed compositional MM estimation with a bivariate cellwise outlier
filter and multiple imputation (BF-MI).

LS MM BF-MI
Variable Coeff. Std. Error p-value Coeff. Std. Error p-value Coeff. Std. Error p-value
Intercept −2.215 1.754 0.208 −3.142 1.965 0.111 −2.822 1.998 0.159

z
(Acetate)
1 0.125 0.082 0.127 0.203 0.104 0.053 0.301 0.084 < 0.001

z
(Propionate)
1 −0.247 0.048 < 0.001 −0.304 0.067 < 0.001 −0.385 0.054 < 0.001

z
(Butyrate)
1 0.093 0.051 0.072 0.070 0.054 0.193 0.025 0.050 0.617

z
(Isobutyrate)
1 −0.015 0.047 0.744 −0.023 0.052 0.664 −0.014 0.055 0.794

z
(Isovalerate)
1 0.006 0.032 0.848 0.005 0.034 0.890 0.015 0.034 0.662

z
(Valerate)
1 0.038 0.039 0.322 0.049 0.037 0.195 0.059 0.064 0.350

ln(ME) 0.725 0.484 0.136 0.999 0.512 0.052 0.755 0.481 0.118
ln(DMI) −0.413 0.064 < 0.001 −0.408 0.064 < 0.001 −0.397 0.072 < 0.001
ln(Weight) 0.627 0.147 < 0.001 0.651 0.165 < 0.001 0.689 0.186 < 0.001
DietMixed 0.328 0.040 < 0.001 0.308 0.048 < 0.001 0.245 0.048 < 0.001
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(without the cellwise outlier filter) provides only a weakly significant positive association between
animal methane emission and the relative production of ruminal acetate (p = 0.053). Moreover,
a statistically significant negative association was concluded in both cases between methane yield
and the dominance of propionate (p < 0.001). The results from using our proposed BF-MI method
are comparable in terms of overall directions of the associations, but the statistical significance
of the acetate related term was notably higher (p < 0.001), which further stresses the role of the
contrast between acetate and propionate as a driver of the association between the ruminal VFA
composition and methane emission, which is in agreement with biological knowledge (Wolin,
1960; Palarea-Albaladejo et al., 2017).

As our procedure depends on the parameter τ of the bivariate outlier filter (lower values of
τ leading to more cells being marked as cellwise outliers), and on whether variable screening is
performed in the imputation step, we perform a sensitive analysis on those parameters. Table 2 in
Appendix E shows the results obtained for various sensible choices of τ with and without variable
screening. Even though there are some differences in the values of the coefficient estimates, the
results are qualitatively similar. The p-values lead to the same conclusions in terms of statistical
significance, making the findings robust across all choices.

6 Computation time

We evaluate the computation time of the proposed procedure on simulated data sets. As in
Section 4, we vary the number of observations n ∈ {50, 100, 200} and the number of compositional
parts D ∈ {5, 10, 20}. We follow the same procedure as described in Section 4.1 to generate the
data, but only consider k = 1 for the multiplicative factor of the covariance matrix, contamination
level ζ = 0.02, and 100 simulated data sets for each parameter configuration. For the sake of
comparison, we include the same methods as described in Section 4.2. We thereby use the same
parameter choices, and the same software packages and functions for their computation. All
computation times are measured with the R package microbenchmark (Mersmann, 2019) on a
laptop with a 2.3 GHz Intel Core i5 processor and 16GB main memory.

The results are shown in Figure 3: the average computation time in seconds is displayed in
the top row, and the relative speed gain of each method with respect to our method is displayed
in the bottom row. Note that when D = 20, the shooting S-estimator (ShS) cannot be applied
for n = 50 and n = 100, as the number of pairwise logratios is larger than the number of
observations. Below we give a summary of the relative performance of the other methods with
respect to our proposal.

LS: this is about 40–45 times faster than our method with a 5-part composition (depending
on the number of observations), and the relative speed difference increases with increasing
number of compositional parts.

MM: this is about 25–30 times faster than our method with a 5-part composition (depending
on the number of observations), and the relative speed difference increases with increasing
number of compositional parts.

ShS: this is about 3–4 times faster than our method, with the relative speed difference being
fairly stable in the number of observations and the number of compositional parts.

3S: this is about 5–10 times faster than our method with a 5-part composition (depending on
the number of observations). The relative speed difference increases at first with the number
of compositional parts, but decreases again when it becomes large enough for our method to
perform variable screening in the imputation stage.

There is clearly a price to pay in terms of computation time for the robustness and inter-
pretability of our procedure. However, we find the computation time to be reasonable for many
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Fig. 3: Computation time of different methods for varying numbers of observations n and com-
positional parts D (averaged over 100 simulated data sets). The top row shows the computation
time in seconds, while the bottom row shows the relative speed gain of each method with respect
to our proposed method.

practical applications, in particular given that we do not consider the case of high-dimensional
compositions. In our example with the VFA data (n = 239, D = 6, p = 3 real-valued co-
variates, 1 dummy variable), the computation time was 4.003 seconds; whereas compositional
MM-regression required 0.113 seconds. It should also be noted that our current implementation
is using R. It is likely that a considerable gain in speed can be achieved by implementing certain
parts in, for example, the C++ language.

7 Conclusions and discussion

In compositional data analysis, the parts of a composition are considered intrinsically related
to each other and the ratios between them constitute the key source of relevant information.
However, cellwise outliers may be present in individual compositional parts. Keeping this problem
in mind, we introduce a procedure to deal with cellwise outliers with the purpose of conducting
robust regression analysis while taking the nature of compositional data into account. For the
detection of cellwise outliers, we apply a bivariate filter (Rousseeuw and Van den Bossche, 2018)
at the level of pairwise logratios where the elemental information is contained. For the imputation
of cellwise outliers, we adapt an existing imputation method for missing compositional data (Hron
et al., 2010), which treats the problem indirectly via pivot coordinates. Alternative missing data
imputation methods could be developed in future research, e.g., robust versions of the non-
parametric and Bayesian approaches implemented in the R package zCompositions (Palarea-
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Albaladejo and Mart́ın-Fernández, 2015). Importantly, using rowwise robust imputation and
regression after filtering cellwise outliers yields a procedure that protects against both cellwise
and rowwise outliers.

In our simulation study, the proposed BF-MI algorithm outperforms the well-known rowwise
robust MM-estimator (Yohai, 1987) and the more recently introduced cellwise robust shooting
S-estimator (Öllerer et al., 2016). In most simulation scenarios, the prediction performance of
our method is similar to that of 3-step regression (Leung et al., 2016), which is another recent
cellwise and rowwise robust regression proposal. Nevertheless, 3-step regression can only be
applied to additive logratio (alr) coordinates, since pivot coordinates would turn cellwise outliers
in the original data into entire outlying rows, which could easily render the majority of rows
to be outliers. Even with alr coordinates, this outlier propagation occurs for observations with
an outlying cell in the reference part in the denominator of the alr coordinates, but not for
outlying cells in other parts. Moreover, applying 3-step regression to different alr-coordinate
representations yields different predictions. The imputation stage in our method, going back to
the original compositional parts, allows for predicted values that do not depend on a specific
coordinate representation. In addition, the regression analysis can be done on any coordinate
system that gives the desired interpretation. These advantages make our method preferable for
practical purposes. Here we used pivot coordinates, which are particularly popular in the context
of exploratory data analysis (Filzmoser et al., 2018), but other choices are possible, e.g., other
orthonormal coordinates such as balances (Egozcue and Pawlowsky-Glahn, 2005) or weighted
pivot coordinates (Hron et al., 2017), or even oblique coordinate systems (Greenacre, 2018).

Finally, some limitations of our proposed method are discussed. The simulation results for a
(hypothetical) variation of the procedure with an ideal outlier filter are an indication that further
refinement of the outlier filter could yield an improvement in performance. Hence this could be
a fruitful venue for future research. Moreover, the procedure tends to become unstable when the
number of variables approaches the number of observations, and it cannot be used when the
number of variables is larger than the number of observations. For the latter case, estimators
that are affine equivariant and rowwise robust are not available. This poses a challenge for
high-dimensional compositional data and their coordinate representations, which are mutually
related through affine transformations (rotations in case of orthonormal coordinates). Hence, the
properties of the regression coefficient estimates after rotations of pivot coordinate systems (as
shown in Section 3.3) are in general not satisfied, and alternative approaches would be needed.
Thus, an extension of the proposed procedure to the high-dimensional case is a challenge for
future research.
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A Pseudocode of the BF-MI algorithm

The pseudocode uses the same notation as defined in Section 3. Elements of a matrix or vector are indicated by
subscripts, e.g., xij denotes the i-th element of vector xj . Furthermore, let IA(.) be the indicator function for
a set A. Algorithm 1 describes rowwise robust compositional MM-regression, where it is important to keep in
mind that MM-estimator can be seen as a weighted least squares estimator with data-dependent weights (Yohai,
1987). Algorithm 2 outlines cellwise outlier detection for compositional data, whereas Algorithms 3 and 4 describe
the initial k-nearest-neighbor (knn) imputation and the robust model-based imputation procedure, respectively.
Finally, Algorithm 5 puts all the building blocks together for our proposed BF-MI procedure.

For simplicity, Algorithm 4 does not include the variable screening step for the imputation models (see
Section 3.2). In addition, the output of Algorithm 5 is limited to the estimates of the interpretable regression
coefficients (cf. Section 3.3) and the corresponding variance estimates. Significance tests for those coefficients can
then be performed in the usual way for multiple imputation (see Barnard and Rubin, 1999). If one is interested
in prediction, the algorithm can easily be adjusted in the following way. As all pivot coordinate systems yield the
same predictions, it suffices to pick one set of pivot coordinates. One can then perform MM-regression with those
pivot coordinates for each imputed data set, and average the coefficient estimates. For a new observation, the
same pivot coordinates can be computed to obtain the prediction of the response with the averaged coefficients.

Algorithm 1 Compositional MM-regression

Input: Compositional data X = (x1, . . . ,xD), real-valued covariates V = (v1, . . . , vp), real-valued response y
Output: Regression coefficient estimates and corresponding variance estimates

1: . On the first pivot coordinate system, fully iterate the MM-regression algorithm

2: Compute pivot coordinates z
(1)
1 , . . . , z

(1)
D−1 from x1, . . . ,xD

3: Perform MM-regression of y on z
(1)
1 , . . . , z

(1)
D−1, v1, . . . , vp

4: Store intercept α̂ and coefficient estimates β̂
(1)
1 , γ̂1, . . . , γ̂p of variables z

(1)
1 , v1, . . . , vp, respectively

5: Compute variance estimates v̂ar(α̂), v̂ar
(
β̂
(1)
1

)
, v̂ar(γ̂1), . . . , v̂ar(γ̂p)

6: . The other pivot coordinate systems can use a weighted least squares fit
7: Obtain weights w = (w1, . . . , wn)′ of observations from MM-regression fit
8: for j ∈ {2, . . . , D} do
9: Compute pivot coordinates z

(j)
1 , . . . , z

(j)
D−1 from x1, . . . ,xD

10: Perform weighted least squares regression of y on z
(j)
1 , . . . , z

(j)
D−1, v1, . . . , vp with weights w

11: Store coefficient estimate β̂
(j)
1 of coordinate z

(j)
1

12: Compute variance estimates v̂ar
(
β̂
(j)
1

)
13: end for
14: . Return coefficient estimates and corresponding variance estimates

15: return (α̂, β̂
(1)
1 , . . . , β̂

(D)
1 , γ̂1, . . . , γ̂p)′ and

(
v̂ar(α̂), v̂ar

(
β̂
(1)
1

)
, . . . , v̂ar

(
β̂
(D)
1

)
, v̂ar(γ̂1), . . . , v̂ar(γ̂p)

)′

B On using a separate imputation step

As an alternative to the use of a separate imputation step, we looked into modifying the definition of pivot
coordinates in (1) so that they account for missing values in the compositional data set. The main idea behind
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Algorithm 2 Detection of cellwise outliers

Input: Data matrix X = (x1, . . . ,xD, r1, . . . , rp+1) of compositional parts and real-valued variables
Output: Index set O of outlying cells and index set U of outlying rows

1: . Cellwise outlier detection on pairwise logratios and real-valued variables
2: L← (ln(x1/x2), . . . , ln(xD−1/xD), r1, . . . , rp+1)
3: Apply bivariate filter of Rousseeuw and Van den Bossche (2018) to L
4: Store index set OL ← {(i, k) : cell in row i and column k of L is marked as cellwise outlier}
5: Store index set UL ← {i : row i of L is marked as rowwise outlier}
6: . Mark outlying cells in compositional parts
7: Initialize empty set O . set of indices (i, j) of cells in X to be marked as cellwise outliers
8: Initialize empty set U . set of indices i of rows in X to be marked as rowwise outliers
9: for j ∈ {1, . . . , D} do

10: Obtain index set Kj ← {k : column k of L contains a logratio involving xj}
11: for i ∈ {1, . . . , n} do
12: if 1

(D−1)

∑
k∈Kj

IOL ((i, k)) ≥ 0.5 then

13: O ← O ∪ {(i, j)}
14: end if
15: end for
16: end for
17: . Adopt outlying cells in real-valued variables from bivariate filter
18: for j ∈ {1, . . . , p+ 1} do
19: for i ∈ {1, . . . , n} do
20: if (i,D(D − 1)/2 + j) ∈ OL then
21: O ← O ∪ {(i,D + j)}
22: end if
23: end for
24: end for
25: . Mark outlying rows and only mark outlying cells that are not part of outlying rows
26: for i ∈ {1, . . . , n} do
27: if i ∈ UL or 1

D+p+1

∑D+p+1
j=1 IO((i, j)) >= 0.75 then

28: . Marked as rowwise outlier in L or at least 75% of cells marked as cellwise outliers in X
29: U ← U ∪ {i}
30: O ← O \ {(i, j) : j = 1, . . . , D + p+ 1}
31: end if
32: end for
33: return Index sets O and U

Algorithm 3 Initial knn imputation for compositional data and real-valued variables

Input: Data matrix X = (x1, . . . ,xD, r1, . . . , rp+1) of compositional parts and real-valued variables with
missing values (outlying cells)
Output: Imputed data matrix X̃

1: Apply simultaneous knn imputation with Aitchison distance to X = (x1, . . . ,xD)
2: Store imputed data matrix as X̃ = (x̃1, . . . , x̃D)

3: Compute pivot coordinates z̃
(1)
1 , . . . , z̃

(1)
D−1 from x̃1, . . . , x̃D

4: Apply simultaneous knn imputation with Euclidean distance to
(
r1, . . . , rp+1, z̃

(1)
1 , . . . , z̃

(1)
D−1

)
5: Store imputed real-valued variables as R̃ = (r̃1, . . . , r̃p+1)

6: return Imputed data matrix X̃ = (X̃, R̃)

these missing value preserving pivot coordinates is that the geometric mean in the denominator of the logratio
in (1) discards missing values.

Let ui = (ui1, . . . , uiD)′ be an indicator vector for observed values in a composition xi = (xi1, . . . , xiD)′, i.e.:

uik =

{
1 if xik is observed,
0 if xik is missing,

k = 1, . . . , D.
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Algorithm 4 Model-based imputation for compositional data and real-valued variables

Input: Data matrix X = (x1, . . . ,xD, r1, . . . , rp+1) of compositional parts and real-valued variables with
missing values (outlying cells)
Output: Imputed data matrix X̃ , residual scale estimates σ̂1, . . . , σ̂D+p+1 from imputation models

1: . Initializations
2: Rearrange first D columns of X by sorting compositional parts by decreasing amount of missing values
3: Rearrange last p+ 1 columns of X by sorting real-valued variables by decreasing amount of missing values
4: Obtain index sets φj ← {i : cell in row i and column j of X is missing}, j = 1, . . . , D + p+ 1
5: Obtain index sets ψj ← {i : cell in row i and column j of X is observed}, j = 1, . . . , D + p+ 1
6: Initialize counter it← 0 and convergence criterion η ←∞
7: Initialize X [0] =

(
x
[0]
1 , . . . ,x

[0]
D , r

[0]
1 , . . . , r

[0]
p+1

)
by applying knn imputation from Algorithm 3 to X

8: . Iterative model-based imputations
9: while η ≥ 0.5 do

10: it← it+ 1

11: X [it] =
(
x
[it]
1 , . . . ,x

[it]
D , r

[it]
1 , . . . , r

[it]
p+1

)
← X [it−1] =

(
x
[it−1]
1 , . . . ,x

[it−1]
D , r

[it−1]
1 , . . . , r

[it−1]
p+1

)
12: . Imputations in compositional data
13: for j ∈ {1, . . . , D} do
14: Compute pivot coordinates z

(j)
i1 , . . . , z

(j)
i,D−1 from x

[it]
i1 , . . . , x

[it]
iD , i = 1, . . . , n

15: Perform MM-regression of z
(j)
i1 on z

(j)
i2 , . . . , z

(j)
i,D−1, r

[it]
i1 , . . . , r

[it]
i,p+1, i ∈ ψj

16: Compute prediction ẑ
(j)
i1 from z

(j)
i2 , . . . , z

(j)
i,D−1, r

[it]
i1 , . . . , r

[it]
i,p+1, i ∈ φj

17: Replace x
[it]
i1 , . . . , x

[it]
iD with the inverse mapping of ẑ

(j)
i1 , z

(j)
i2 , . . . , z

(j)
i,D−1, i ∈ φj

18: Compute robust residual scale estimate σ̂j from MM-regression fit
19: end for
20: . Imputations in real-valued variables

21: Compute pivot coordinates z
(1)
i1 , . . . , z

(1)
i,D−1 from x

[it]
i1 , . . . , x

[it]
iD , i = 1, . . . , n

22: for j ∈ {1, . . . , p+ 1} do
23: Perform MM-regression of r

[it]
ij on z

(1)
i1 , . . . , z

(1)
i,D−1, r

[it]
i1 , . . . , r

[it]
i,j−1, r

[it]
i,j+1, r

[it]
i,p+1, i ∈ ψj

24: Replace r
[it]
ij with prediction r̂

[it]
ij from z

(1)
i1 , . . . , z

(1)
i,D−1, r

[it]
i1 , . . . , r

[it]
i,j−1, r

[it]
i,j+1, r

[it]
i,p+1, i ∈ φj

25: Compute robust residual scale estimate σ̂D+j from MM-regression fit
26: end for
27: . Update convergence criterion

28: η ←
∑n

i=1

∑D
j=1

(
x
[it−1]
ij −x

[it]
ij

x
[it]
ij

)2

+
∑p+1

j=1

(
r
[it−1]
ij −r

[it]
ij

r
[it]
ij

)2


29: end while
30: Obtain X̃ by rearranging columns of X [it] from last iteration according to original order of columns in X
31: Rearrange residual scale estimates σ̂1, . . . , σ̂D+p+1 accordingly

32: return Imputed data matrix X̃ and residual scale estimates σ̂1, . . . , σ̂D+p+1

ThenD(ui) =
∑D

l=1 uil is the observed dimension of observation xi. With an indicator vector vi = (vi1, . . . , vi,D−1)′

defined by

vik =

{
1 if uik = 1 and any uil = 1 for l > k,
0 otherwise,

k = 1, . . . , D − 1,

we can define missing value preserving pivot coordinates z̃i = (z̃i1, . . . , z̃i,D−1)′ as

z̃ik =


√

D(ui)−jk(vi)
D(ui)−jk(vi)+1

ln

(
xik

D(ui)−jk(vi)
√∏

l>k:uil=1 xil

)
if vik = 1,

missing if vik = 0,

k = 1, . . . , D − 1, (8)

where jk(vi) =
∑k

l=1 vil. Note that jk(vi) accounts for the number of observed pivot coordinates up to and
including the current coordinate.

Now consider the regression model

Y = α+ β1Z1 + . . .+ βD−1ZD−1 + ε
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Algorithm 5 Robust compositional regression with bivariate filter and multiple imputation

Input: Compositional data X = (x1, . . . ,xD), real-valued covariates V = (v1, . . . , vp), real-valued response y
Output: Regression coefficient estimates and corresponding variance estimates

1: . Detect cellwise outliers
2: Obtain index set O of cellwise outliers by applying Algorithm 2 to X = (x1, . . . ,xD, v1, . . . , vp, y)
3: . Special case of no cellwise outliers
4: if O = ∅ then
5: Apply Algorithm 1 for compositional MM-regression of y on x1, . . . ,xD, v1, . . . , vp
6: return Coefficient estimates and corresponding variance estimates
7: end if
8: . Filter and impute cellwise outliers
9: Replace cells of X with indices in O by missing values

10: Apply model-based imputation with Algorithm 4 to X = (x1, . . . ,xD, v1, . . . , vp, y)

11: Store imputed data matrix as X̃ = (x̃1, . . . , x̃D, ṽ1, . . . , ṽp, ỹ)
12: Store residual scale estimates from imputation models as σ̂1, . . . , σ̂D+p+1, respectively
13: . Robust compositional regression with multiple imputation

14: nout ← n−
∑n

i=1

∏D+p+1
j=1 (1− IO((i, j))) . Number of observations with outlying cells

15: M ← max(2, round(100 · nout/n)) . Number of imputations
16: Obtain oj ←

∑n
i=1 IO((i, j)), j = 1, . . . , D + p+ 1 . Number of outlying cells per variable

17: for m ∈ {1, . . . ,M} do
18: . Add random noise to imputations

19: Initialize X̃ {m} =
(
x̃
{m}
1 , . . . , x̃

{m}
D , ṽ

{m}
1 , . . . , ṽ

{m}
p , ỹ{m}

)
by X̃ = (x̃1, . . . , x̃D, ṽ1, . . . , ṽp, ỹ)

20: for (i, j) ∈ O do
21: Draw random noise term e ∼ N(0, σ̂2

j (1 + oj/n))

22: if j ∈ {1, . . . , D} then . Compositional parts

23: Compute pivot coordinates z̃
(j)
i1 , . . . , z̃

(j)
i,D−1 from x̃i1, . . . , x̃iD

24: z̃
(j)
i1 ← z̃

(j)
i1 + e

25: Replace x̃
{m}
i1 , . . . , x̃

{m}
iD with the inverse mapping of z̃

(j)
i1 , . . . , z̃

(j)
i,D−1

26: else if j ∈ {D + 1, . . . , D + p} then . Real-valued variables

27: ṽ
{m}
i,j−D ← ṽi,j−D + e

28: else . Response variable

29: ỹ
{m}
i ← ỹi + e

30: end if
31: end for
32: . Perform compositional MM-regression

33: Apply Algorithm 1 for compositional MM-regression of ỹ{m} on x̃
{m}
1 , . . . , x̃

{m}
D , ṽ

{m}
1 , . . . , ṽ

{m}
p

34: Store coefficient estimates as θ̂{m} =
(
θ̂
{m}
0 , . . . , θ̂

{m}
D+p

)′
35: Store variance estimates as Û{m} =

(
Û
{m}
0 , . . . , Û

{m}
D+p

)′
36: end for
37: . Aggregate results from multiple imputation

38: Compute final coefficient estimates θ̂j ← 1
M

∑M
m=1 θ̂

{m}
j , j = 0, . . . , D + p

39: Compute average within-imputation variances Ŵj ← 1
M

∑M
m=1 Û

{m}
j , j = 0, . . . , D + p

40: Compute between-imputation variances B̂j ← 1
M−1

∑M
m=1

(
θ̂
{m}
j − θ̂j

)2
, j = 0, . . . , D + p

41: Compute variance estimates V̂j ← Ŵj + M+1
M

B̂j , j = 0, . . . , D + p

42: return Coefficient estimates (θ̂0, . . . , θ̂D+p)′ and corresponding variance estimates (V̂0, . . . , V̂D+p)′

with error term ε, and denote β = (β1, . . . , βD−1)′. For simplicity we do not consider additional real-valued
covariates in this section. With the missing value preserving pivot coordinates from (8), we obtain a data set(
yi, z̃

′
i

)
1≤i≤n

. We can first compute the sample mean omitting missing values by coordinate, denoted by m, and

the sample covariance matrix based on pairwise complete observations, denoted by S. With

m =

(
mY

mZ

)
and S =

(
SY Y SY Z

SZY SZZ

)
,
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estimates of the regression coefficients can be computed as β̂ = S−1
ZZSZY and α̂ = mY −m′Z β̂. If the missing

values are missing completely at random (MCAR), m and S are consistent estimators (Little and Rubin, 2002,

p. 42–43), and therefore we have consistency of α̂ and β̂ under the usual assumptions of the linear regression
model. However, the pairwise complete sample covariance matrix S is not guaranteed to be positive definite,
so an eigenvalue correction may be necessary. For robust estimates of m and S, one could use the generalized
S-estimator of Danilov et al. (2012), which is also consistent under MCAR.

For linear regression with compositional explanatory variables, we are interested in all regression models based
on the different pivot coordinate systems from (3), i.e.,

Y = α+ β
(l)
1 Z

(l)
1 + . . .+ β

(l)
D−1Z

(l)
D−1 + ε, l = 1, . . . , D.

With x
(l)
i =

(
x
(l)
i1 , . . . , x

(l)
iD

)′
= (xil, xi2, . . . , xi,l−1, xi,l+1, . . . , xiD)′, we obtain different sets of missing value

preserving pivot coordinates z̃
(l)
i =

(
z̃
(l)
i1 , . . . , z̃

(l)
i,D−1

)′
, l = 1, . . . , D, analogous to (8). Then the regression

estimator based on the pairwise complete sample covariance matrix or the robust generalized S-estimator yields

consistent estimates α̂(l), β̂
(l)
1 , . . . , β̂

(l)
D−1 under MCAR.

However, consistency is not enough in the context of compositional data, we also need to ensure that the
properties of pivot coordinates hold on finite samples. The most important property is that the different pivot
coordinate systems from (3) are orthogonal rotations of each other. This property is crucial for the interpretation
of regression coefficients, and it will ensure that the estimates of the intercept (and any coefficients of additional
real-valued explanatory variables) are identical. Furthermore, it does not matter which coordinate system is used
for prediction purposes, as the predictions will be identical.

We therefore ran a small simulation study. We generated n = 250 observations on D = 6 compositional parts.
We first generate observations zi on D − 1 coordinates from a multivariate normal distribution with mean 0 and
covariance matrix Σ = (0.5|i−j|)1≤i,j≤D−1. Then we generated the response yi = z′iβ+ εi with β = (1, 0, 1, 0, 1)′

and standard normal error terms εi. Afterwards, we applied the inverse ilr mapping to the coordinates zi to obtain
the D-part compositions xi. Finally, we set cells in the data matrix X = (x′1, . . . ,x

′
n)′ to missing values with a

probability of 10% (MCAR). We repeat this 500 times.
For each generated data set, we computed two different missing value preserving coordinate systems: one

where the first coordinate is based on the first compositional part and one where the first coordinate is based
on the second compositional part. Then we estimated the regression coefficients based on the pairwise complete
sample covariance matrix. We generated n independent test observations in the same way as described above,
and computed predictions using the coefficient estimates based on the two pivot coordinate systems.

As argued above, those predictions need to be identical, otherwise the missing value preserving pivot coor-
dinates are not useful in practice. However, we obtain an average absolute difference of the predictions of 0.0172
(averaged over all simulation runs and all observations in the test set).

While the difference is on average small, the predictions are definitely not identical. Therefore the coordinate
systems are not exact orthogonal rotations of each other, and we cannot use such missing value preserving
coordinates in practice. For interpretability purposes and to obtain identical predictions from different pivot
coordinate systems, we first need to impute the compositional data and then compute the pivot coordinates based
on the complete (imputed) data, as proposed in Section 3.

C On including the response variable in the bivariate filter and multiple imputation

One point of discussion brought up by an anonymous reviewer is whether the response variable should be included
in the cellwise outlier filter and subsequent multiple imputation, or whether outliers in the response should remain
in the data to be treated by the MM-regression estimator. As we use a bivariate filter to detect cellwise outliers,
including the response in the bivariate filter can help with detecting outlying cells in the explanatory variables
more accurately. For multiple imputation, Allison (2002, p.53) argues that the response variable needs to be
included in the imputation process. The main argument is that if the response variable is omitted a priori from
the imputation models, the conditional distribution from which the imputed values are drawn will be in general
misspecified, resulting in bias in the regression coefficients.

To further investigate this issue, we perform simulations to assess the effect of the imputations on the estima-
tion of the model. We use the same simulation design as in Section 4, but we only consider D = 5 compositional
parts. We keep the probability of rowwise outliers fixed at 0.05, but we vary the probability of cellwise outliers
from 0 to 0.2. As a baseline, we use the robust MM-regression estimator applied to pivot coordinates on the
simulated data without cellwise contamination. To isolate the effect of multiple imputation on the coefficient
estimates, we apply the hypothetical version of the proposed procedure with an ideal outlier filter (IF-MI) to the
same simulated data but with added cellwise contamination. Moreover, we also apply a variant of the procedure
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Fig. 4: Results from 1000 simulation runs to investigate the effect of the imputations on the
estimated regression coefficients: the average coefficient estimates from regression methods in
pivot coordinates are plotted against the cellwise contamination level for different cellwise outlier
settings.

(IF-MI-X) that includes only the explanatory variables in the filtering and imputation steps, and leaves outliers
in the response variable to be treated by the MM-estimator. In addition to generating cellwise outliers in all
variables, we also consider a scenario with cellwise outliers only in the compositional explanatory variables. This
second scenario isolates the role of the response variable as a predictor in the imputation models of IF-MI, since
no values in the response are imputed.

Figure 4 shows the results for the D − 1 = 4 regression coefficients for sample size n = 100 and the multipli-
cation factor of the covariance matrix k = 1. Results for other values of n and k lead to the same conclusions and
are therefore omitted. By leaving out the correlated response variable in the multiple imputation process, bias in
the regression coefficients is indeed amplified using IF-MI-X. As expected, this bias increases as the cellwise con-
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tamination level increases. On the other hand, when the response variable is included in the multiple imputations,
the conditional distributions are more accurately modeled, and the bias of IF-MI is much lower.

D Figures of simulation results
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Fig. 5: Results from 1000 simulation runs for the scenario with D = 5 compositional parts:
the average MSE of coefficient estimates from regression methods in pivot coordinates is plotted
against the contamination level ζ for various sample sizes n and scaling factors k of the covariance
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average MSEP for different regression methods is plotted against the contamination level ζ for
various sample sizes n and scaling factors k of the covariance matrix in pivot coordinates.



32 Stefelová et al.
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the average MSEP for different regression methods is plotted against the contamination level ζ
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E Table of results from the sensitivity analysis using the VFA data set
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